ข้อสอบ O-NET

 


ข้อ 22 ตอบข้อ 3   เหตุผล ก คือแป้ง ข คือ น้ำตาลทราย ค คือ เส้นใยพืช(ไหมเป็นเส้นใยสัตว์
 ซึ่งถือเป็นเส้นใยโปรตีน) ง คือน้ำตาลอะไรก็ได้ที่ไม่ใช่น้ำตาลทราย 





ข้อ 69 ตอบข้อ 1 เพราะ มีโปรตอน 9 แสดงว่าเลขข้างล่าง คือ 9 นิวตรอน 10 แสดงว่า
 เลขบน-เลขล่าง คือ 10 
ข้อ 70 ตอบข้อ 1 เมื่อจัดเรียงอิเล็กตรอนแล้วจะได้ 2 7 คือ หมู่ 7 คาบ 2 
นั่นคือ F ซึ่งอยู่ในรูปของ Diatomic molecule

ข้อ 71 ตอบข้อ 4 เพราะ ข้อ 1 2  ถูก ฟลูออรีนอยู่ในสถานะแก๊ส ไอออนมีประจุ -1 
ซึ่งเมื่อเกิดสารประกอบกับ Ca ซึ่งเป็นโลหะ


ข้อ 39 ตอบข้อ 3 

ก. เกลือแกง NaCl โซดาไฟ NaOH 

ข. สารประกอบไอออนิกสภาวะปกติ ไม่นำไฟฟ้า จะนำไฟฟ้าได้เมื่อหลอมเหลว หรือ
    ละลายเป็นสารละลาย 

ค.ธาตุเหล่านี้เรารู้จักกันว่าเป็นโลหะ เพราะมีสมบบัติทางกายภาพเหมือนโลหะ
   แมสมบัติทางเคมีบางประการที่แตกต่างจากโลหะในหมู่ 1A และ 2A



ข้อ 69 ตอบข้อ 1 เพราะ มีโปรตอน 9 แสดงว่าเลขข้างล่าง 
คือ 9 นิวตรอน 10 แสดงว่า เลขบน-เลขล่าง คือ 10

ข้อ 70 ตอบข้อ 1 เมื่อจัดเรียงอิเล็กตรอนแล้วจะได้ 2 7 คือ
 หมู่ 7 คาบ 2 นั่นคือ F ซึ่งอยู่ในรูปของ Diatomic molecule

ข้อ 71 ตอบข้อ 4 เพราะ ข้อ 1 2  ถูก ฟลูออรีนอยู่ในสถานะแก๊ส
 ไอออนมีประจุ -1 ซึ่งเมื่อเกิดสารประกอบกับ Ca ซึ่งเป็นโลหะ

หมู่ 2 จะมีสูตร CaX2


ข้อ 21 ตอบข้อ 4

ข้อ 1 ถูก อ้างอิงจากแบบเรียน สารและสมบัติของสารหน้า 30 เรื่องกรดนิวคลีอิก

ข้อ 2 ถูก (ไม่มีในแบบเรียนสารและสมบัติของสาร)

ข้อ 3 ถูก อ้างอิงจากแบบเรียน สารและสมบัติของสารหน้า 12 เรื่องประโยชน์ของไขมัน

ข้อ 4 ผิด อ้างอิงจากแบบเรียน สารและสมบัติของสารหน้า 29




ข้อ 22 ตอบข้อ 3

เหตุผล ก คือแป้ง ข คือ น้ำตาลทราย ค คือ เส้นใยพืช(ไหมเป็นเส้นใยสัตว์ ซึ่งถือเป็นเส้นใยโปรตีน) ง คือน้ำตาลอะไรก็ได้ที่ไม่ใช่น้ำตาลทราย



ข้อ 25 ตอบข้อ 1

การเกาะเกี่ยวของคู่เบสจะมีความจำเพาะเจาะจง คือ

อะนะดีน(A) กับ ไทมีน (T)

กวานีน(G) กับ ไซโตซีน (C)




ข้อ 23 ตอบข้อ 4 เพราะ น้ำมันพืชแม้จะเป็นไขมันที่เหมาะกับการประกอบอาอารแต่ต้องมีการเติมวิตามินอีหรือสารบางชนิดลงไปก่อน


ข้อ 1 และ 2 การพิจรณาการเหม็นหืนของน้ำมัน ถ้ามี % ไขมันไม่อิ่มตัวมาก จะเหม็นหืนเร็ว



ข้อ 24 ตอบข้อ ไม่มีคำตอบ

ปล. ข้อ 1 จะเกิด 6 ชนิด

ข้อ 2 การทดสอบโปรตีนทดสอบด้วย CuSO4 ในเบส ให้สารสีน้ำเงินม่วงซึ่งเป็นสารประกอบเชิงซ้อนระหว่างทองแดงกับ สารที่มีพันธะเปปไทด์ 2 พันธะขึ้นไป (ขอบคุณ น้อง kasama จาก ตอ.)

อ้างอิงจาก หนังสือกวดวิชาเคมี อ.อุ๊ บท สารชีวโมเลกุล หน้า 142

ข้อ 3 พันธะเปปไทด์ 2 พันธะ



ข้อ 26 ตอบข้อ 3

ข้อ 1 น้ำมันเบนซินมีจุดเดือด 250-340 องซาเซลเซียส

ข้อ 2 ไฮโดรคาร์บอนทุกชนิดไม่ละลายน้ำเพราะไม่มีขั้ว

ข้อ 4 จำนวนคาร์บอนของตัวทำละลายในอุตสาหกรรมเคมี คือ 6-12

ทั้งหมดอ้างอิงจาก หนังสือเรียนสารและสมบัติของสารหน้า 37 ภาพ 2.1




ข้อ 29 ตอบข้อ 1

ข้อ 30 ตอบข้อ 2 Cl2+H2O------->HClO(กรดไฮโปคลอรัส)+HCl(กรดเกลือ/กรดไฮโดรคลอริก)     (โหดมากสำหรับสายศิลป์)

ข้อ 1 อีเทน ไม่ละลายน้ำ

ข้อ 4 (จริงๆควรได้กรดซัลฟิวรัสมากกว่า)

ข้อ 31 ตอบข้อ 1 เพราะ จะเผาไหม้ได้ก๊าซคาร์บอนไดออกไซด์และน้ำได้ต้องเป็นสารอินทรีย์ และเกิดการเผาไหม้แบบเผาไหม้สมบูรณ์

ปล.
ข้อ 2 แก๊สโซฮอล์ คือ เอทานอล + น้ำมันเบนซิน
ข้อ 4 แก๊สธรรมชาติ หมายถึง แก๊สมีเทน



ข้อ 32 ตอบข้อ 1 เพราะ อุณหภูมิต่ำลงเป็นปฏิกิริยาดูดความร้อน


ข้อ 33 ตอบข้อ 2 เพราะเกิดแก๊ส

ข้อ 1 สบู่ละลายได้ทั้งน้ำและไขมัน เพราะมีส่วนทั้งส่วนที่มีขั้วและไม่มีขั้ว

ข้อ 3 โปรตีนเสียสภาพ กลับคืนไม่ได้

ข้อ 4 ไม่ใช่ตัวเร่ง แต่มันเกิดปฏิกิริยาเอง (ไฟฟ้าเคมี) แบบเซลล์ทุติยภูมิ



ข้อ 37 ตอบข้อ 1 ไอโซโทปคือ ธาตุที่มีจำนวนโปรตอนเท่ากัน ส่วนข้อ 3 คือธาตุเดียวกับที่โจทย์ให้

เพิ่มเติม ไอโซโทน คือ นิวตรอนเท่ากัน ไอโซบาร์ คือ เลขมวลเท่ากัน ไอโซอิเล็กทรอนิกส์คือ อิเล็กตรอนเท่ากัน

ข้อ 38 ตอบข้อ 4 เมื่อจัดเรียงอิเล็กตรอนแล้วจะได้ดังนี้

A 2,2          B 2,8,3          C 2,8,7




ข้อ 39 ตอบข้อ 3

ก. เกลือแกง NaCl โซดาไฟ NaOH

ข. สารประกอบไอออนิกสภาวะปกติ ไม่นำไฟฟ้า จะนำไฟฟ้าได้เมื่อหลอมเหลว หรือ ละลายเป็นสารละลาย

ค.ธาตุเหล่านี้เรารู้จักกันว่าเป็นโลหะ เพราะมีสมบบัติทางกายภาพเหมือนโลหะ แมสมบัติทางเคมีบางประการที่แตกต่างจากโลหะในหมู่ 1A และ 2A

อ้างอิงจากแบบเรียน สารและสมบัติของสารหน้า 111 เรื่องโลหะแทรนซิชัน



ข้อ 40 ตอบข้อ 3

สมมติให้ตอนแรกมี 100 จะสลายตัวดังนี้ 100--->50--->25--->12.5--->6.25 ครึ่งชีวิต 5000 ปี แสดงว่าทั้งหมดจะใช้เวลา 20,000 ปี



ข้อ 59 ตอบข้อ 2  อ้างอิงจากแบบเรียน สารและสมบัติของสารหน้า 117 เรื่องประโยชน์ของธาตุกัมมันตรังสี



ข้อ 34 ตอบข้อ 1,3



ข้อ 35 ตอบข้อ 1 เพราะ การดูดความชื้นไม่ถือเป็นปฏิกิริยาเคมี (ใครมีเหตุผลอื่นค้านได้นะครับ) ข้อ 2 ก็ตอบได้ครับเพราะกระดาษที่ใช้งานไม่ได้คือ

กระดาษขาดไม่เกิดปฏิกิริยาเคมี ส่วนพลาสติก เกิดปฏิกิริยาเคมีครับ เพราะ เกิดการขาดออกของสายโซ่ เป็นต้น

ข้อ 36 ตอบข้อ 3 H+ มีโปรตอน 1 นิวตรอน 0 อิเล็กตรอน 0





ข้อ 27 ตอบข้อ 2 เหตุผล ยางวัลคาไนซ์มีการเติมซัลเฟอร์เพื่อปรับปรุงคุณสมบัติ

ข้อ 1 SiO2 เป็นของแข็งไม่ใช่ก๊าซ ข้อ 4 NH3 ละลาบน้ำแล้วสมบัติเป็นเบส ส่วนข้อ 3 พอลิไวนิลอซิเตตไม่มี Cl ในโครงสร้าง

เมื่อเผาจึงไม่น่าจะสามารถสลายให้ HCl ได้

ข้อ 28 ตอบข้อ 3,4

ข้อ 1 เคี้ยวข้าว แป้งโดนย่อยเป้นมอลโตส

ข้อ 2 สบู่จับกับไอออนบางชนิดที่มีในน้ำกระด้างกลายเป็นไคลสบู่









ข้อ 72 ตอบข้อ 2 เพราะอัตราไม่คงที่ ไม่ได้ลดลงตามเวลา

ข้อ 73 ตอบข้อ 2 เพราะ แอมโมเนีย 2 โมล พอดีกับ คาร์บอนมอนออกไซด์ 1 โมล ถ้าใช้แอมโมเนีย 3 โมล และคาร์บอนไดออกไซด์ 1 โมล จะเหลือ

แอมโมเนีย 1 โมล และมีน้ำเกิดขึ้นอีก 1 โมล

ข้อ 74 ตอบข้อ ไม่เฉลยเพราะไม่เข้าใจโจทย์ หากอ้างอิงจากข้อ 73 จะตอบข้อ 2 เพราะแอมโมเนียเป็นตัวเหลือพ่นลงน้ำรวมกับไอน้ำที่เกิดขึ้น

ข้อสอบ PAT 2

บทโครงสร้างอะตอม(แบบจำลองอะตอม)

1. ทิศทางของไอออน He+ และ Ne+ เคลื่อนที่ไปด้วยกัน ผ่านสนามไฟฟ้า แนวทางการเคลื่อนที่ของไอออนทั้งสองควรมีลักษณะตามข้อใด (PAT-2 ก.ค.52)
ก. เคลื่อนที่เป็นสองแนวแยกกันไปในทิศตรงข้าม
ข. เคลื่อนที่เป็นสองแนวในทิศทางเดียวกัน โดย He+ มีรัศมีการเลี้ยวเบนสั้นกว่า
ค. เคลื่อนที่เป็นสองแนวในทิศทางเดียวกัน โดย Ne+ มีรัศมีการเลี้ยวเบนสั้นกว่า
ง.  เคลื่อนที่เป็นแนวทางเดียวกัน

เฉลย ข. เพราะ Ne+ และ He+ จะเคลื่อนไปด้าน Cathode เช่นกัน แต่ Ne+ จะเลี้ยวเบนได้ระยะทางที่ยาวกว่า (ไกลกว่า) เนื่องจากมีมวลหนักกว่า จึงมีแรงเฉื่อยในการเคลื่อนที่มากกว่า


2. ข้อใดไม่เกี่ยวข้องกับสเปกตรัมของอะตอมไฮโดรเจน (PAT-2 มี.ค.58)
ก. แบบจำลองอะตอมของรัทเทอร์ฟอร์ด
ข. ระดับชั้นพลังงานของอิเล็กตรอน
ค. แบบจำลองอะตอมกลุ่มหมอก
ง. รัศมีวงโคจนของอิเล็กตรอน

เฉลย ก. เพราะ แบบจำลองของรัทเทอร์ฟอร์ด มีระดับพลังงานชั้นเดียว จึงอธิบายเกี่ยวกับสเปกตรัมไม่ได้

3. พิจารณาข้อมูลต่อไปนี้
    I. อะตอมประกอบด้วยนิวเคลียสและอิเล็กตรอน
    II. อิเล็กตรอนโคจนรอบนิวเคลียส โดยมีวงโคจรที่แน่นอน
    III. การดูดหรือคายพลังงานของอิเล็กตรอน จะทำให้อิเล็กตรอนเปลี่ยนระดับพลังงาน
    IV. โอกาสที่จะพบอิเล็กตรอนขึ้นอยู่กับระยะห่างจากนิวเคลียส
ข้อใดไม่เกี่ยวข้องกับแบบจำลองอะตอมกลุ่มหมอก (PAT-2 พ.ย.58)
ก. I , II
ข. II , IV
ค. II , III
ง. I , II และ III

เฉลย ข. เพราะแบบจำลองแบบกลุ่มหมอก อธิบายว่า อิเล็กตรอนโคจรรอบนิวเคลียส ไม่มีวงโคจรที่แน่นอน แต่จะพบอิเล็กตรอนอยู่ในออร์บิทัล และโอกาสพบอิเล็กตรอนบริเวณหมอกหนาทึบมากกว่าบริเวณที่มีหมอกจางไม่ใช่ขึ้นอยู่กับระยะห่างจากนิวเคลียส

4. ข้อใด ถูกต้อง เกี่ยวกับแบบจำลองอะตอมกลุ่มหมอก (PAT-2 พ.ย.58)
ก. อิเล็กตรอนอยู่ไม่ประจำที่
ข. อิเล็กตรอนกระจายอย่างไม่สม่ำเสมอในอะตอม
ค. ระดับชั้นพลังงานของอิเล็กตรอนมีค่าไม่แน่นอน
ง. อิเล็กตรอนเคลื่อนที่รอบนิวเคลียสโดยมีรัศมีวงโคจรแน่นอน
จ. ความน่าจะเป็นที่จะพบอิเล็กตรอนมีค่าไม่เท่ากันในแต่ละบริเวณ

เฉลย จ. เพราะบริเวณที่มีหมอกหนาทึบ มีโอกาสพบอิเล็กตรอนมากกว่า บริเวณที่หมอกจาง

บทตารางธาตุ สมบัติของสารประกอบของธาตุตามคาบ


5. ธาตุ X เมื่อเกิดสารประกอบไอออนิกกับธาตุออกซิเจนพบว่าได้สารที่มีสูตรเคมีเป็น XO2 โดยออกซิเจนในสารประกอบมีการจัดอิเล็กตรอนเป็น 1s2 2s2 2p5 จากข้อมูลข้างต้นข้อใดถูกต้อง 
(PAT-2มี.ค.54)
ก. X เป็นอโลหะ
ข. X เป็นธาตุในคาบ 2
ค. X เป็นธาตุที่อยู่หมู่เดียวกับธาตุที่มีเลขอะตอม 88
ง. X เป็นธาตุที่มีค่าอิเล็กโทรเนกาติวิตีมากที่สุดในตารางธาตุ

เฉลย ค. เพราะจากการจัดเรียงอิเล็กตรอนของออกซิเจนเป็น 1s2 2s2 sp5 แสดงว่าออกซิเจนรับอิเล็กตรอนมาเพียง 1 ตัว เพื่อเกิดสารประกอบไอออนิกออกซิเจนจึงเป็นไอออนลบหนึ่ง (O-) เมื่อคิดเลขออกซิเดชันของสารประกอบเป็นดังนี้ X (+2) O2 (-1)

6. พิจารณาสูตรเคมี และสมบัติของสารประกอบระหว่างไนโตรเจนกับธาตุสมมติ A , D , E  และ G
ในตารางต่อไปนี้ โดยที่ธาตุสมมติเหล่านี้อยู่ในคาบเดียวกัน

สารประกอบไนโตรเจนของ
สูตรเคมี
สมบัติ
A
A3N
 จุดหลอมเหลวและจุดเดือดต่ำมาก
B
D3N2
 จุดหลอมเหลวและจุดเดือดสูงมาก
C
E3N4
 จุดหลอมเหลวสูงมากถึง 1900 องศาเซลเซียส
D
G2N2
 โครงสร้างเป็นวง แรงยึดระหว่างโมเลกุลเป็นแรงระหว่างขั้ว

จากข้อมูลข้างต้นให้เรียงลำดับขนาดอะตอมของ A , D , E และ G (PAT-2 เม.ย.57)
ก. A > D > E > G
ข. D> E > G > A
ค. E > G > A > D
ง. G > A > D > E

เฉลย ข. เพราะ ธาตุ A , B , E , G น่าจะเป็นธาตุคาบ 3 Na Mg(D) Al Si(E) P S(G) Cl(A)

7. ธาตุสมมติ A , D และ E เป็นธาตุที่มีเลขอะตอมเรียงกันและอยู่ในคาบ 3 พบว่าทั้งออกไซด์ของ E และไฮไดรด์ของ A , D และ E มีสถานะเป็นแก๊สที่อุณหภูมิห้องจากข้อมูลนี้ ข้อใดถูกต้อง (PAT-2 พ.ย.57)
ก. ค่า IE1 ของ D > E > A
ข. สูตรของสารประกอบออกไซด์ของ
ค. ธาตุ A , D และ E อยู่ใน 5A , 6A และ 7A ตามลำดับ
ง. เลขอะตอมของ A , D และ E คือ 13 , 14 และ 15 ตามลำดับ
เฉลย ก. เพราะ ธาตุที่ 3 ข้อมูลธาตุ E ของ ข้อ ข , ค , ง ขัดแย้ง 
               ค่า IE หมู่ 5 สูงกว่าหมู่ 6


8. สารประกอบฟลูออไรด์ของธาตุในคาบที่สามทั้ง 5 ชนิด คือ A , D , E , G และ J มีสูตรดังนี้
ธาตุ
สูตรของสารประกอบฟลูออไรด์
A
AF2 , AF4 , AF6
D
DF2
E
EF4
G
GF3 , GF5
J
JF , JF3 , JF5

จากข้อมูลข้างต้น ข้อใด ผิด (PAT-2 มี.ค.60)
ก. A เป็นธาตุหมู่ 3
ข. D เป็นโลหะ
ค. ออกไซด์ของ E มีสูตรเป็น EO2
ง. D และ G เกิดสารประกอบที่มีสูตรเป็น D3G2
จ. สารประกอบออกไซด์หนึ่งของ J คือ J2O7

เฉลย ก. เพราะธาตุในคาบ 3 Na Mg (D) Al Si(E) P(G) S(S) Cl(J) Ar ข้อ ก. ผิดเพราะธาตุ Ar เกิดสารประกอบกับฟลูออรีนไม่ได้

9. ธาตุสมมติ A , B , C และ D อยู่ในคาบ 2 สารประกอบของธาตุเหล่านี้มีสมบัติดังข้อมูลต่อไปนี้
    I.    สารประกอบไฮไดรด์ของ A มีจุดหลอมเหลวสูงกว่าสารประกอบไฮไดรด์ของธาตุคาบ 3 ในหมู่                 เดียวกัน และสารประกอบคลอไรด์ของธาตุ A มีสูตร ACl3
    II.   สารประกอบออกไซด์ของ B มีสูตรเป็น B2O และสารประกอบออกไซด์ของธาตุตัวอื่นๆในหมู่                   เดียวกับ B มีสมบัติเป็นเบส
    III.  สารประกอบคลอไรด์ของธาตุ C มีสถานะเป็นแก๊สที่อุณหภูมิห้อง 25 องศา และสารประกอบนี้มี               สมบัติเป็นตัวรับอิเล็กตรอนที่ดี
    IV.  สารประกอบไฮไดรด์ของ D มีสมบัติเป็นกรดอ่อน

จากข้อมูลข้างต้น ข้อใด ถูกต้อง (PAT-2 ธ.ค.56)
ก. เลขอะตอมของ D > C > A > B
ข. ขนาดอะตอมของ B > C > A > D
ค. พลังงานไอออไนเซซันของ D > C > A > B
ง. ความสามารถในการรับอิเล็กตรอนของ B > C > A > D

เฉลย ข. เพราะ ธาตุคาบ 2   Li --> B(Li2O)  Be  B --> C(BCl3)  C  N --> A(NH3)  O  F -->D(HF) Ne
A(NH3) มีแรงยึดเหนี่ยวระหว่างโมเลกุลเป็น H-b ส่วน PH3 มีแรงยึดเหนี่ยวระหว่างโมเลกุลเป็นแรงระหว่างขั้ว
C(BCl3) เป็นสารประกอบที่มีเวเลนต์อิเล็กตรอนไม่ครบ 8 จึงสามารถรับอิเล็กตรอนได้ดี 

10. พิจาณาโครงสร้างของสารประกอบออกไซด์ของธาตุสมมติ A , B , C และ D ซึ่งเป็นธาตุในคาบที่ 3 ในตารางต่อไปนี้


ออกไซด์ของธาตุ
รายละเอียดของโครงสร้าง
A
A แต่ละตัวมี ล้อมรอบ 4 ตัว และ แต่ละตัวมี A ล้อมรอบ 2 ตัว
B
แต่ละตัวมี ล้อมรอบ 6 ตัว และ O แต่ละตัวมี ล้อมรอบ 4 ตัว
C
C แต่ละตัวมี ล้อมรอบ 4 ตัว และ O แต่ละตัวมี ล้อมรอบ 8 ตัว
D
D แต่ละตัวมี ล้อมรอบ 6 ตัว และ O แต่ละตัวมี ล้อมรอบ 6 ตัว


หมายเหตุ มีธาตุ 3 ตัวเป็นโลหะ และธาตุ 1 ตัวเป็นกึ่งโลหะ
จากข้อมูลในตาราง ข้อใดถูกต้อง (PAT-2 ต.ค.55)
ก. ขนาดของ A > B > C > D
ข. ความสามารถในการรับอิเล็กตรอนของ A > B > C > D
ค. ค่าพลังงานไอออไนเซชันอันดับ 1 ของ D > C > B > A
ง. เลขออกซิเดชันของ A , B , C และ D ในสารประกอบออกไซด์เหล่านี้เป็น +2 , +3 , +4 และ +1 ตามลำดับ

เฉลย ข. เพราะ ธาตุ A B C D เป็นธาตุคาบที่ 3 มีโลหะ 3 ตัว กึ่งโลหะ 1 ตัว แสดงว่า A , B , C , D
จะต้องเป็นธาตุหมู่ 1-4 เช่นกัน
A2O4 ----> AO2 (SiO2)
B4O6 ----> B2O3 (Al2O3)
C8O4 ----> C2O (Na2O)
D6O6 ----> DO (MgO)

สัญลักษณ์นิวเคลียร์ เลขมวล เลขอะตอม และไอโซโทป

11. ธาตุ A อยู่ในคาบ 4 หมู่ 1A ธาตุ B อยู่ในคาบ 3 หมู่ 6A ธาตุ A และ B เกิดสารประกอบ AxBy จากข้อมูลข้างต้น ข้อใดต่อไปนี้ถูกต้อง (PAT-2 มี.ค. 52)
ก. ธาตุ A มีเลขอะตอมเท่ากับ 20 ธาตุ B มีเลขอะตอมเท่ากับ 16
ข. จำนวนอิเล็กตรอนของไอออนของ A มีค่าเท่ากับ 18
ค. จำนวนนิวตรอนของธาตุ A น้อยกว่า B
ง. ธาตุ B เกิดสารประกอบโคเวเลนต์กับธาตุ H ได้สารที่มีสถานะเป็นของเหลวที่อุณหภูมิห้อง

เฉลย ข. เพราะ A อยู่คาบ 4 หมู่ 1 (การจัดเรียงอิเล็กตรอนเป็น 2 8 8 1)
จำนวนอิเล็กตรอนของ A+ เป็น 2 8 8

คลื่น สเปกครัม และแบบจำลองอะตอมของโบร์

12. ปรากฏการณ์ใดต่อไปนี้ที่ไม่ได้นำทฤษฏีควอนตัมของพลังงาน E = hV มาใช้ในการอธิบาย 
(PAT-2 ธ.ค. 56)
ก. ปรากฏการณ์โฟโตอิเล็กทริก
ข. สเปกตรัมเส้นที่ได้จากอะตอมไฮโดรเจน
ค. การยิงอนุภาคแอลฟาผ่านแผ่นทอง
ง. การเปล่งแสงของวัตถุเมื่อได้รับความร้อน

เฉลย ค. เพราะการยิงอนุภาคแอลฟาผ่านแผ่นทองคำ เป็นการยิงอนุภาคบวกไปชนอนุภาคภายในอะตอม และศึกษาการเบี่ยงเบนของรังสีแอลฟา

แบบจำลองอะตอมแบบกลุ่มหมอก และ การจัดอิเล็กตรอน

13. ข้อความต่อไปนี้ ข้อใด ไม่ถูกต้อง (PAT-2 ก.ค. 53)
ก. ออร์บิทัลชนิด d จะเริ่มมีในระดับพลังงาน n = 3
ข. ระดับพลังงานย่อย f ในระดับพลังงาน n = 3 มีจำนวน 7 ออร์บิทัล
ค. ในระดับพลังงาน n = 3 มีจำนวนออร์บิทัลทั้งหมด 9 ออร์บิทัล
ง. ในระดับพลังงาน n = 4 มีจำนวนพลังงานย่อย 4 ระดับ

เฉลย ข. ผิดเพราะในระดับพลังงานที่ 3 ไม่มี f orbital

14. ธาตุในข้อใดมีสมบัติสอดคล้องกับข้อมูลต่อไปนี้ (PAT-2 มี.ค. 58)
       1. อะตอมของธาตุนี้ในสถานะพื้นมีจำนวนอิเล็กตรอนเดี่ยว 1 ตัว
       2. สูญเสียอิเล็กตรอนได้ง่ายที่สุดในคาบ
       3. มีเลขอะตอมมากว่า 31 แต่น้อยกว่า 46
ก.  เลขอะตอม 35A  
ข.  เลขอะตอม 37D
ค.  เลขอะตอม 39E
ง.  เลขอะตอม 41G

เฉลย ข. เพราะ เลขอะตอม 37D [Kr] 5s1 มีอิเล็กตรอนเดี่ยว 1 ตัว จ่ายอิเล็กตรอนออกไป ธาตุจะเสถียร

15. พิจารณา electron configuration ของธาตุสมบัติต่อไปนี้
      A : [Ar] 4s2  3d10  4p3
      B : [Ar] 4s2  3d10  4p6
      C : [Kr] 5s2  4d10  5p3
      D : [Kr] 5s2  4d10  5p6
ธาตุใดอยู่ในหมู่เดียวกัน (PAT-2 ต.ค. 54)
ก. A , B
ข. B , C
ค. B , D
ง. A , C

เฉลย ง. เพราะ A และ C มีเวเลนต์อิเล็กตรอนจัดเรียงเป็น 4p3 และ 5p3 ตามลำดับทั้งคู่อยู่หมู่ 5

16.  ข้อใดถูกเกี่ยวกับพลังงานไอออไนเซชัน ลำดับที่ 1 ของตารางธาตุแต่ละคู่ (PAT-2 ก.ค. 53)
ก. 1H มีค่ามากกว่า 2He
ข. 11Na มีค่ามากกว่า 12Mg
ค. 18Ar มีค่ามากกว่า 19K 
ง. 18Ar มีค่ามากว่า 10Ne

เฉลย ค. เพราะเวเลนต์อิเล็กตรอนของ Ar เสถียรมากกว่า K

บทสมบัติของธาตุในหมู่ต่างๆ

17. เมื่อพิจารณาจากการจัดเรียงอิเล็กตรอน ไอออนที่น่าจะมีความเสถียรมากที่สุด คือ ชนิดใด
(PAT-2 ก.ค. 52)
ก. H+
ข. He+
ค. He2+
ง. Li+

เฉลย ง. เพราะ Li+ จัดเรียงอิเล็กตรอนเป็น 2 เสถียรเหมือนแก๊สเฉื่อย (He)

18. พิจารณาสมบัติของธาตุสมบัติต่อไปนี้
ธาตุ
สมบัติ
A
  มีขนาดใหญ่ที่สุดในคาบ 3 และทำปฏิกิริยากับน้ำ
D
  รับอิเล็กตรอนยากที่สุดในหมู่ VA หรือหมู่ 15
E
  มีจำนวนอิเล็กตรอนน้อยที่สุดในตารางธาตุ
G
  มีค่าอิเล็กโทรเนกาวิตีมากที่สุดในตารางธาตุ
J
  อยู่หมู่ IVA หรือหมู่ 14 และเป็นองค์ประกอบสำคัญในการควอตซ์

สารประกอบระหว่างธาตุคู่ใดต่อไปนี้ที่เกิดปฏิกิริยากับน้ำแล้วให้เกิดแก๊สไฮโดรเจน (PAT-2 ต.ค. 59)
ก. A และ E 
ข. D และ G
ค. E และ G 
ง. G และ J

เฉลย ก. เพราะ A คือ Na ,  D คือ N , E คือ H , G คือ F , J คือ Si
                                  NaH + H2O ----> NaOH + H2

19. พิจารณาสัญลักษณ์อะตอมของธาตุสมมติต่อไปนี้ 16A , 17B , 19C , 20D , 35E ข้อใดผิด
เกี่ยวกับสมมติของธาตุเหล่านี้ (PAT-2 ธ.ค. 56)
ก. ธาตุที่ว่องไวในการเกิดปฏิกิริยากับน้ำมากที่สุดคือ C
ข. B เป็นธาตุที่รับอิเล็กตรอนได้ง่ายที่สุด
ค. ขนาดของ C > D > E > A > B
ง. สารประกอบระหว่าง A และ B คือ AB3 , AB4 , AB6

เฉลย ง. เพราะ A คือ S ส่วน B คือ Cl ไม่พบสาร SCl3 เนื่องจาก S มีอิเล็กตรอนเดี่ยวสารประกอบดังกล่าวไม่เสถียร

บทธาตุ Transition

20. ข้อใดเป็นการจัดเรียงอิเล็กตรอนของ 24Cr3+  (PAT-2 ต.ค.53)
ก. 1s2  2s2  2p6  3s2  3p6  4s1  3d2
ข. 1s2  2s2  2p6  3s2  3p6  3d3
ค. 1s2  2s2  2p6  3s2  3p6  4s2  3d1
ง.  1s2  2s2  2p6  3s2  3p3  4s1  3d5

เฉลย ข. เพราะ 24Cr = [Ar] 4s1  3d5
                         24Cr3+ = [Ar] 3d3

21. ข้อใดเป็นการจัดอิเล็กตรอนที่สภาวะพื้นของ Fe(II) (Z = 26) (PAT-2 มี.ค. 54)
ก. 1s2  2s2  2p6  3s2  3p6  4s2  3d4
ข. 1s2  2s2  2p6  3s2  3p6  4s0  3d6
ค. 1s2  2s2  2p6  3s2  3p6  4s1  3d5
ง. 1s2  2s2  2p6  3s2  3p5  4s2  3d5

เฉลย ข. เพราะ  26Fe = [Ar]  4s2  3d6
                          26Fe2+  = [Ar]  3d6

22. พิจารณาการจัดเรียงอิเล็กตรอนของธาตุต่อไปนี้ 
       A :  [Ar]  4s2  3d7
       B :  [Ne]  3s2  3p4  4s1
       C :  [Ne]  3s1
       D :  [Ne] 3s2  3p3
จากข้อมูลข้างต้น ข้อใด ถูกต้อง (PAT-2 มี.ค.56)
ก. ธาตุ A สามารถเกิดสารประกอบกับ B ได้สารประกอบไอออนิกและสารประกอบเชิงซ้อน
ข. ธาตุ B อยู่หมู่เดียวกับธาตุ C
ค. ธาตุ B มีขนาดใหญ่กว่าธาตุ C และธาตุ D
ง. สูตรของสารประกอบระหว่างธาตุ B และธาตุ D คือ DB3 เท่านั้น

เฉลย ก. เพราะ ธาตุ A คือ 27Co  ,   ธาตุ B คือ 17Cl   ,  ธาตุ C คือ 11Na  ,  D คือ 15P

23. ข้อใดไม่ใช่สาเหตุที่ทำให้ [CoCl4]2- (สีน้ำเงิน) และ [Co(H2O)6]2+ (สีชมพู) มีสีต่างกัน 
(PAT 2 ต.ค. 54)
ก. ประจุแตกต่างกัน
ข. โครงสร้างแตกต่างกัน
ค. ชนิดของหมู่ที่ล้อมรอบอะตอมกลางแตกต่างกัน
ง. จำนวนหมู่ที่ล้อมรอบอะตอมกลางแตกต่างกัน

เฉลย ก. เพราะ ประจุ 2- กับ 2+ ไม่มีผลให้สีเปลี่ยน

24. จากการศึกษาสารประกอบเชิงซ้อนชนิดหนึ่งพบว่า 1 โมเลกุลประกอบด้วย Co(III) 1 ไอออน , 
Br- 3 ไอออน และ H2O 6 โมเลกุล สารนี้เกิดไอโซเมอร์ขึ้นหลายไอโซเมอร์โดยบางไอโซเมอร์ H2O ทำหน้าที่เป็นหมู่ที่มาล้อมรอบ เช่น [Co(H2O)6]Br3 บางไอโซเมอร์ H2O ทำหน้าที่เป็นน้ำผลึก เช่น [CoBr3(H2O)3].3H2O (H2O ที่อยู่นอกวงเล็บทำหน้าที่เป็นน้ำผลึก) โดยน้ำผลึกนี้จะถูกทำให้ระเหยไปได้ โดยอบสารที่อุณหภูมิ 120 C ในขณะที่ H2O ที่เป็นหมู่ที่มาล้อมรอบจะไม่ระเหยไปที่อุณหภูมินี้ นักเรียนคนหนึ่งทำการสังเคราะห์สารประกอบเชิงซ้อนนี้พบว่าได้ของผสมไอโซเมอร์ต่างๆ ออกมา แล้วทำการไอโซเมอร์ต่างๆ โดยใช้เทคนิคทางเคมี นักเรียนคนนี้พยายามทำการวิเคราะห์เบื้องต้นเกี่ยวกับสูตรของไอโซเมอร์ต่างๆโดยใช้อุปกรณ์ที่ไม่ซับซ้อน วิธีการใดต่อไปนี้เหมาะสมที่สุด (PAT 2 ต.ค. 55)
ก. โครมาโทกราฟี
ข. กรอง
ค. การให้ความร้อน 
ง. การตกผลึก

เฉลย ค. เพราะ โครงสร้างในสารประกอบเชิงซ้อน น้ำบางส่วนไม่สามารถระเหยได้ แต่น้ำบางส่วนสามารถระเหยได้ ดังนั้นการศึกษาโครงสร้าง สามารถใช้อุปกรณ์ที่ไม่ซับซ้อนตรวจสอบได้ คือ การให้ความร้อน

บทพันธะเคมี -พันธะไอออนิก


25. ผลึกไอออนิกแตกหักเมื่อมีแรงเข้าไปกระทำเพราะเหตุใด (PAT 2 ก.ค. 53)
ก. ประจุชนิดเดียวกันผลักกัน
ข. อิเล็กตรอนหลุดออกจากผลึก
ค. จำนวนประจุบวกและลบไม่เท่ากัน
ง. อิเล็กตรอนเคลื่อนที่เร็วขึ้น เนื่องจากมีพลังงานจลน์มากขึ้น

เฉลย ก. เพราะ ประจุแต่ละชนิดจะต้องผลักกันตามหลักของขั้ว

26. ธาตุ X มีเลขอะตอม 53 จงพิจารณาข้อความต่อไปนี้
      1. X รวมตัวกับโลหะปรอทแล้วจะมีสูตรเคมีเป็น Hg2X2
      2. X เมื่อเป็นไอออนจะมีโครงสร้างอิเล็กตรอนเป็น 2  8  18  18  8
      3. X เมื่อเป็นไอออนจะมีรัศมีไอออนเล็กกว่าไอออนของธาตุที่มีโครงสร้างอิเล็กตรอนเป็น 
          2  8  18  18  8  1
ข้อใดถูกต้อง (PAT 2 มี.ค. 52)
ก. 1 และ 2
ข. 2 และ 3
ค. 1 และ 3
ง. 2

เฉลย ก. เพราะ สารประกอบปรอทสามารถมีสูตรเป็น Hg2Cl2 , Hg2I2 ได้

27. จุดหลอมเหลวของ MgO สูงกว่า NaF เนื่องจากสาเหตุใดต่อไปนี้ (PAT 2 มี.ค. 55)
      1. Mg2+ มีประจุบวกสูงกว่า Na+
      2. O2- มีประจุลบสูงกว่า F-
      3. O2- ใหญ่กว่า F-
ก. ข้อ 2 เท่านั้น
ข. ข้อ 1 และ 2
ค. ข้อ 1 และ 3
ง. ข้อ 1 , 2 และ 3

เฉลย ข. เพราะ 1.ประจุที่สูงกว่าจะทำให้เกิดแรงยึดเหนี่ยวได้มากกว่า จุดหลอมเหลวจึงสูงกว่า
                         2. ขนาด O2- ที่ใหญ่กว่า F- ทำให้โครงร่างผลึกห่างจากกันมากแรงยึดเหนี่ยวจะอ่อนลง                               ไม่ได้ทำให้จุดหลอมเหลวของ MgO สูงกว่า NaF

28. ข้อใดผิดเกี่ยกับการนำไฟฟ้าของสารชนิดต่างๆ (PAT 2 ต.ค. 53)
ก. การนำไฟฟ้าของสารประกอบไอออนิกในสถานะของเหลวเกิดจากการถ่ายเทอิเล็กตรอนจากไอออนบวกให้ไอออนลบ
ข. การนำไฟฟ้าของโลหะเกิดจากการเคลื่อนที่ของอิเล็กตรอนที่มีพลังงานจลน์สูง
ค. แกรไฟต์ซึ่งเป็นอัญรูปหนึ่งของคาร์บอนนำไฟฟ้าได้เนื่องจาก การเคลื่อนที่ของอิเล็กตรอน
ง. สารกึ่งตัวนำ จะนำไฟฟ้าได้ก็ต่อเมื่อได้รับพลังงานจำนวนหนึ่งแล้วทำให้อิเล็กตรอนเกิดการเปลี่ยนระดับพลังงาน

เฉลย ก. เพราะ การนำไฟฟ้าของไอออนิกเป็นการเคลื่อนที่ของไอออน ไม่ใช่การถ่ายเทอิเล็กตรอน

พลังงานในการเกิดพันธะไอออนิก

29. พิจารณาปฏิกิริยา Ca (s) + 1/2 O2 (g) ------>   CaO (s)
      พลังงานในข้อใดไม่เกี่ยวข้องกับปฏิกิริยานี้ (PAT 2 มี.ค. 54)
ก. พลังงานแลตทิช
ข. พลังงานการระเหิดของ Ca
ค. พลังงานไอออไนเซชั่นของธาตุออกซิเจน
ง. พลังงานการสลายพันธะของธาตุออกซิเจน

เฉลย ค. เพราะ Ca (s) + 1/2O2 ---->  CaO (s) 
          พลังงานในการเกิดมี 5 ขั้นตอน พลังงานไอออไนโซชันเกิดกับธาตุ Ca ไม่เกิดกับธาตุออกซิเจน

30. พิจารณาวัฏจักร Born-Haber สำหรับการเกิดเฮไลด์ของธาตุสมมติ A(AXn)
      a.  X2 (s) ----> X2 (l)                                                       ∆H1 
      b.  X2 (l) ----> X2 (g)                                                      ∆H2
      c.  X2 (g) ----> 2X (g)                                                      ∆H3
      d.  X (g) + e- ----> X- (g)                                                 ∆H4
      e.  A (s) ----> A (g)                                                          ∆H5
      f.   A (g) ----> An+ (g) + ne-                                            ∆H6 
      g.  An+ (g) + nX- (g) ----> AXn (s)                                 ∆H7 
ถ้าพบว่า A (s) + n/2 X2 ----> AXn (s) มีค่า  ∆H = ∆H2 + ∆H3 + 2∆H4  + ∆H5 + ∆H6 + ∆H7
สารประกอบ AXn ควรเป็นข้อใด  (PAT 2 เม.ย. 57) 
ก. CaCl3
ข. CaBr2
ค. AlCl3
ง. AlBr3

เฉลย ข. เพราะ จากสมการรวมทั้งหมด (∆H)  ไม่เกี่ยวข้องกับ ∆H1 แสดงว่า X ต้องเป็นของเหลวในที่นี้คือ Br2 และจากสมการ d ต้องใช้พลังงานเท่ากับ 2 ∆H4 แสดงว่า Br ต้องมี 2 อะตอม

31. การเกิดสารประกอบ Na2O เกี่ยวข้องกับพลังงานในขั้นตอนต่างๆดังนี้
      (I)   Na (s) ----> Na (g)                                                     ∆H = E1  kJ
      (II)  Na (g) ----> Na+ (g) + e-                                           ∆H = E2  kJ
      (III) O2 (g)  ----> 2O (g)                                                   ∆H = E3  kJ
      (IV) O (g) + 2e- ----> O2- (g)                                           ∆H = E4  kJ
      (V)  2Na+ (g) + O2- (g) ----> Na2O (s)                            ∆H = E5  kJ
จากข้อมูลนี้ข้อใดผิด (PAT 2 พ.ย. 57)ก. E2 มีค่ามากกว่า IE1 ของ 19K
ข. ขั้นที่ IV และ V เป็นขั้นตอนที่คายพลังงาน
ค. ขั้นที่ I , II , III เป็นขั้นตอนที่ดูดพลังงาน
ง. พลังงานแลตทิชมีค่าเท่ากับ E1 + 2E2 + E3/2 + E4 + E5

เฉลย ง. เพราะ พลังงานแลตทิช มีค่าเท่ากับ E5

พลังงานในการละลายสารประกอบไอออนิก

32. ข้อใดไม่ใช่สมการที่อยู่ในวัฏจักรพลังงานการละลายน้ำของ NaNO3 (s) (PAT 2 ต.ค. 53)
ก. NaNO3 (s) ----> Na+ (g) + NO3- (g)
ข. Na+(g) ----> Na+ (aq)
ค. NO3- (g) ----> NO3- (aq)
ง. NaNO3 (g) ----> Na+ (g) + NO3- (g)

เฉลย ง. เพราะ ข้อ ก. เป็นปฏิกิริยาแสดงพลังงานแลตทิช
ข้อ ข , ค เป็นปฏิกิริยาไฮเดรชันของไอออนบวกและไอออนลบ
ข้อ ง. ผิดเพราะ NaNo3 ต้องมีสถานะของแข็งไม่ใช่แก๊ส

รูปร่างและมุมพันธะ

33. โมเลกุลในข้อใดมีโครงสร้างเหมือนกันทั้งหมด (PAT 2 มี.ค. 52)
ก. CO2  SO2  CS2
ข. NH3  PH3  SO3
ค. CO2  N2  N3-
ง. CCl4  (SO4)2- XeF4

เฉลย ค. เพราะ ทุกตัวมีรูปร่างเป็นเส้นตรง

34. สารประกอบโคเวเลนต์ ข้อใดมีรูปร่างเหมือนกันทั้งหมด (PAT 2 มี.ค. 53)
ก. CCl4  NH4+  XeF4
ข. BF3  NH3  PCl3
ค. BrF5  PCl5  IF5
ง. H2O  SO2  O3
เฉลย ง. เพราะ  ทุกตัวเป็นรูปมุมงอ

35. สารประกอบใดต่อไปนี้มีโครงสร้างแตกต่างจากข้ออื่น (PAT 2 มี.ค. 54)
ก. NF3
ข. SO3
ค. NO3-
ง. B(C6F5)3
เฉลย ก. เพราะ  ก. เป็นรูปพีระมิดฐานสามเหลี่ยม ส่วน ข , ค , ง เป็นรูปแบบสามเหลี่ยมแบนราบ

36. สารประกอบหรือไอออนในข้อใด เมื่อรวมกันในทุกสารประกอบแล้วมีค่าน้อยที่สุด (PAT 2 ก.ค. 53)
(กำหนดเลขอะตอม Be = 4 , Br = 35 , H = 1 , O = 8 , C = 6 , Cl = 17 , S = 16 , N = 7 )
ก. BeBr2 และ H2O
ข. CCl4 และ (SO4)2-
ค. NH4+ และ CH3Cl
ง. CO2 และ H2S

เฉลย ข. เพราะ ต่างก็เป็นทรง 4 หน้าที่มีตัวล้อมรอบเหมือนกัน แต่ ข้อ ค. ก้เป็นทรง 4 หน้า แต่ CH3Cl มีตัวล้อมรอบต่างกันทำให้มุมต่างกันเล็กน้อย

37. A เป็นธาตุสมมติ เกิดสารประกอบฟลูอออไรด์ได้หลายชนิดดังนี้ AF2 , AF4 , AF6 โดยที่
      1.  มุมพันธะใน AF2 มีค่าเป็น 180 องศา
      2. AF4 มีรูปร่างเป็นสี่เหลี่ยมแบนราบ
ข้อใดถูกต้องเกี่ยวกับธาตุ A และสารประกอบฟลูออไรด์ของธาตุ  A (PAT 2 ต.ค. 59)ก. A เป็นธาตุในคาบ 3
ข. AF6 มีอิเล็กตรอนคู่โดดเดี่ยว
ค. ธาตุ A เป็นของแข็งที่อุณหภูมิห้อง
ง. AF4 มีอิเล็กตรอนคู่โดดเดี่ยว 1 คู่
จ. A อยู่หมู่เดียวกับธาตุที่มีเลขอะตอมเท่ากับ 16

เฉลย ข. เพราะ จากสมบัติดังกล่าว A เป็นธาตุหมู่ 8 เมื่อเกิดสารประกอบ AF6 จะมีอิเล็กตรอนคู่โดดเดี่ยวเหลือ 1 คู่

แรงยึดเหนี่ยวระหว่างโมเลกุล

38. ข้อใดผิดเกี่ยวกับอิเล็กตรอนคู่โดดเดี่ยว (lone paired electron) ของอะตอมกลางในโมเลกุลใดๆ (PAT 2 มี.ค. 58)
ก. มีผลต่อโครงสร้างของโมเลกุล
ข. ทำให้หลุดจากโมเลกุลยากกว่าอิเล็กตรอนตัวอื่น
ค. เป็นตำแหน่งที่เกิดแรงกระทำกับไอออนบวก
ง. ไม่เกี่ยวข้องกับการสร้างพันธะของโมเลกุล

เฉลย ค. เพราะ ตำแหน่งที่กระทำกับไออออนบวก ต้องมีสภาพเป็นขั้วลบ โดยพิจารณาจากค่า EN ไม่ใช่ดูจากอิเล็กตรอนคู่โดดเดี่ยว

39. แรงระหว่างโมเลกุลคู่ใดแข็งแรงที่สุด (PAT 2 มี.ค. 58)
ก. เมทานอล - น้ำ
ข. เมทิลคลอไรด์ - เอทิลโบรไมด์
ค. ไดเมทิลอีเทอร์ - แอซิโตน 
ง. ไอโอดีน - น้ำ

เฉลย ก. เพราะ แรงระหว่างโมเลกุลของสารประกอบทั้งคู่เป็น พันธะไฮโดรเจน


บทที่ 3 พันธะเคมี

 สารในชีวิตประจำวันเช่นแก๊สออกซิเจนและแก๊สคาร์บอนไดออกไซด์ที่เกี่ยวข้องกับกระบวนการหายใจของสิ่งมีชีวิตน้ำเป็นของเหลวที่ใช้ในการอุปโภคและบริโภคเกลือแกงเป็นของแข็งที่ใช้ในการประกอบอาหารสารเหล่านี้ส่วนใหญ่ไม่อยู่ในรูปอะตอมเดี่ยวแต่ประกอบด้วยหลายอะตอมซึ่งอาจเป็นอะตอมชนิดเดียวกันหรือต่างชนิดกันการยึดเหนี่ยวกันของอะตอมหรือไอออนในสารเรียกว่าพันธะเคมี 3.1 ลักษณะแบบจุดของลิวอิสและกฎออกเตต

จากการศึกษาเรื่องอะตอมและสมบัติของธาตุทำให้ทราบว่าเวเลนซ์อิเล็กตรอนเป็นอิเล็กตรอนที่อยู่ในระดับพลังงานสูงสุดหรือชั้นนอกสุดของอะตอมธาตุคาร์บอนมีการจัดเรียงอิเล็กตรอนในระดับพลังงานย่อยเป็น 1s^2 2s^2 2p^2 ดังนั้น คาร์บอนมีเวเลนซ์อิเล็กตรอนเท่ากับ 4 ทั้งนี้การเกิดพันธะเคมีเกี่ยวข้องกับเวเลนซ์อิเล็กตรอนของอะตอมที่ร่วมสร้างพันธะกัน
เวเลนซ์อิเล็กตรอนของธาตุอาจแสดงด้วยจุดสัญลักษณ์ที่แสดงธาตุและเวเลนซ์อิเล็กตรอนของธาตุเรียกว่า สัญลักษณ์แบบจุดของลิวอิสซึ่งเสนอโดย กิลเบิร์ต นิวตัน ลิวอิส สัญลักษณ์แบบจุดของลิวอิสใช้จุดแสดงจำนวนเวเลนซ์อิเล็กตรอนรอบสัญลักษณ์ของธาตุดังรูป


ธาตุต่างๆส่วนใหญ่ไม่เสถียรในรูปอะตอมเดี่ยวยกเว้นเพื่อนในหมู่ 18 หรือเรียกว่าแก๊สมีสกุลที่ผมอยู่ในรูปอะตอมเดี่ยวซึ่งมีจำนวนเวเลนซ์อิเล็กตรอนเท่ากับ 8 ยกเว้นฮีเลียมซึ่งมี 2 เวเลนซ์อิเล็กตรอนนอกจากนี้นักเคมี ยังพบว่าอะตอมของธาตุอื่นๆมีแนวโน้มที่จะรวมตัวกัน เพื่อที่จะทำให้แต่ละอะตอมมีเวเลนซ์อิเล็กตรอนเท่ากับ 8 จึงมีการสรุปเป็นหลักการที่เกี่ยวกับกฎออกเตต ศาลที่ไม่อยู่ในรูปอะตอมเดี่ยวมีพันธะเคมีระหว่างอะตอมหรือไอออนโดยที่อะตอมของธาตุจะมีการให้อิเล็กตรอนรับอิเล็กตรอนหรือใช้อิเล็กตรอนร่วมกันทำให้เกิดพันธะเคมีสารประเภทได้แก่พันธะไอออนิกพันธะโคเวเลนต์และพันธะโลหะ 3.2 พันธะไอออนิก
สารที่เกิดจากธาตุโลหะกับธาตุอโลหะ มีสมบัติบางประการทางการและสารเหล่านี้มีการยึดเหนี่ยวระหว่างอนุภาคที่เหมือนกัน
3.2.1 การเกิดพันธะไอออนิก
ธาตุโลหะมีพลังงานไอออไนเซชันต่ำจึงเสียอิเล็กตรอนเกิดเป็นไอออนบวกได้ง่ายส่วนธาตุอโลหะมีค่าสัมพรรคภาพอิเล็กตรอนสูง จึงรับอิเล็กตรอนเกิดเป็นไอออนลบ ไอออนบวกและไอออนลบมีประจุไฟฟ้าต่างกันจึงยึดเหนี่ยวกันด้วยแรงดึงดูดระหว่างประจุไฟฟ้าเรียกการยึดเหนี่ยวนี้ว่าพันธะไอออนิกและสารที่เกิดขึ้นจากพันธะไอออนิกว่าสารประกอบไอออนิกชื่อสารประกอบไอออนิกที่เกิดขึ้นส่วนใหญ่เป็นไปตามกฎออกเตตดังตัวอย่าง


สารประกอบไอออนิกในสถานะของแข็งอยู่ในรูปของผลึกที่มีไอออนบวกและไอออนลบยึดเหนี่ยวกันด้วยพันธะไอออนิกอย่างต่อเนื่องกันไปทั้ง 3 มิติเป็นโครงผลึก และไม่อยู่ในรูปโมเลกุล


3.2.2 สูตรเคมีและชื่อของสารประกอบไอออนิก สารประกอบไอออนิกประกอบด้วยไอออนบวกและไอออนลบที่มีประจุต่างกัน ซึ่งมีผลต่ออัตราส่วนการรวมของไอออนและสูตรของสารประกอบไอออนิกด้วยประจุของไอออน 5 มูลหลักเป็นบวกตามจำนวนและการที่ให้หรือเป็นโรคตามจำนวนอิเล็กตรอนที่รับเพื่อทำให้มีการจัดเรียงอิเล็กตรอนของไอออนเป็นไปตามกฎออกเตต


จากตาราง 3.1 ถ้าโซเดียมซึ่งเป็นธาตุหมู่ IA เมื่อเกิดเป็นไอออนบวกจะมีประจุเป็นบวก 1 5 แคลเซียมซึ่งเป็นธาตุหมู่ iia เมื่อเกิดเป็นไอออนบวกจะมีประจุเป็นบวก 2 และธาตุอะลูมิเนียมซึ่งเป็นธาตุหมู่ IIIA เมื่อเกิดเป็นไอออนบวกจะมีประจุเป็นบวก 3 ดังนั้นธาตุหมู่ IA IA และ IIA เมื่อเป็นไอออนจะเป็นไอออนที่มีประจุตามเลขหมู่ 5 กรณีซึ่งเป็นธาตุหมู่ VIIA เมื่อเกิดเป็นไอออนลบจะมีประจุเป็น -1 ให้ออกซิเจนซึ่งเป็นธาตุหมู่ VIIA เมื่อเกิดเป็นไอออนลบจะมีประจุเป็น -2 และธาตุไนโตรเจนซึ่งเป็นธาตุหมู่ VA เมื่อเกิดเป็นไอออนลบจะมีประจุเป็น -3 ดังนั้นธาตุหมู่ VA VIA และ VIIA เมื่อเป็นไอออน จะเป็นไอออนลบที่มีประจุ X-8 เมื่อ X คือเลขหมู่ของธาตุอโลหะ
การที่โครงสร้างของสารประกอบไอออนิกที่มีไอออนบวกและไอออนลบยึดเหนี่ยวกันอย่างต่อเนื่องกันไปทั้ง 3 มิติเป็นโครงผลึกไม่สามารถแยกเป็นโมเลกุลได้ดังนั้นจึงใช้สูตรเอมพิริคัล แสดงอัตราส่วนอย่างต่ำของจำนวนไอออนที่เป็นองค์ประกอบซึ่งทำให้ได้ผลรวมประจุเป็นศูนย์
การเขียนสูตรสารประกอบไอออนิกจะเขียนสัญลักษณ์ของธาตุที่เป็นไอออนบวกไว้ข้างหน้าตามด้วยไอออนลบและแสดงอัตราส่วนอย่างต่ำของไอออนที่เป็นองค์ประกอบโดยเขียนตัวเลขอารบิกให้ทายไอออนทั้งนี้กรณีที่จำนวนไอออนเป็นหนึ่งไม่ต้องเขียนเช่นสารประกอบไอออนิกที่เกิดจากแคลเซียมไอออนกับฟลูออไรด์ไอออนมีอัตราส่วนประจุของ Ca^2+ ต่อ F^- เป็น 2 ต่อ 1 ซึ่งเมื่อทำให้ผลรวมของประจุเป็นศูนย์จะได้อัตราส่วนอย่างต่ำของจำนวน Ca^2+ ต่อ F^- เป็น 1:2 ดังนั้นสูตรสารประกอบเป็น CaF^2


ไอออนบางชนิดเกิดจากกลุ่มอะตอมการเขียนสูตรสารประกอบจะใช้หลักการเดียวกับไอออนบวกและไอออนลบที่เกิดจากธาตุ เช่นสูตรสารประกอบไอออนิกที่เกิดจากมีไอออนกับซัลเฟตไอออนมีอัตราส่วนประจุของ NH^4+ ต่อ SO4^2- เป็น 1 ต่อ 2 ซึ่งเมื่อทำให้ผลรวมของประจุเป็นศูนย์ จะได้อัตราส่วนอย่างต่ำของจำนวน NH^4+ ต่อ SO4^2- เป็น 2:1 ดังนั้นสูตรสารประกอบเป็น (NH4)2SO4


สารประกอบไอออนิกเกิดจากไอออนบวกและไอออนลบดังนั้นการเรียกชื่อสารประกอบไอออนิกจึงจำเป็นต้องสร้างชื่อของไอออนบวกและไอออนลบโดยชื่อของไอออนบวกเรียกตามชื่อถ้าเราลงท้ายด้วยคำว่าไอออนส่วนไอออนลบเรียกตามชื่อธาตุโดยเปลี่ยนท้ายเสียงเป็น i-de

จากตารางจะเห็นว่าชื่อไอออนลบของธาตุไฮโดรเจนออกซิเจนและไนโตรเจนมีการตัดคำว่าเช่นออกก่อนจะเปลี่ยนท้ายเป็นเสียง i-de ไอออนที่เป็นกลุ่มอะตอมมีชื่อเรียกเฉพาะโดยกลุ่มอะตอมที่เป็นไอออนบวกลงท้ายด้วย -ium ส่วนกลุ่มอะตอมที่เป็นไอออนลบอาจจะลงท้ายด้วยเสียง -ide -ite -ate
ชื่อสารประกอบไอออนิกได้จากการเรียกชื่อไอออนบวกแล้วตามด้วยชื่อไอออนลบโดยตัดคำว่าไอออนออก ดังตาราง


ชื่อสารประกอบที่เกิดจากโลหะที่มีเลขออกซิเดชันมากกว่า 1 ค่า ต้องระบุตัวเลขประจุหรือเลข ออกซิเดชันของไอออนนั้นเป็นเลขโรมันในวงเล็บดังตาราง


3.2.3 พลังงานกับการเกิดสารประกอบไอออนิก
ปฏิกิริยาเคมีนอกจากจะเกี่ยวข้องกับการเปลี่ยนแปลงของสารเคมีแล้วส่วนใหญ่ยังเกี่ยวข้องกับการเปลี่ยนแปลงพลังงานอีกด้วยซึ่ง พลังงานการเกิดของสารประกอบ สามารถหาได้จากการทดลองในการทำปฏิกิริยาระหว่างธาตุ เช่นการเกิดสารประกอบโซเดียมคลอไรด์จากโลหะโซเดียมทำปฏิกิริยากับแก๊สคลอรีนเกิดเป็นโซเดียมคลอไรด์มีการคายพลังงาน 412 กิโลจูลต่อโมล

Na(s) + 1/2Cl2(g) ---> NaCl(s) -412kJ/mol

ปฏิกิริยาเคมีเกี่ยวข้องกับการสลายพันธะและการสร้างพันธะ ซึ่งการสลายพันธะ เป็นกระบวนการดูดพลังงาน ในขณะที่การสร้างพันธะเป็นกระบวนการคายพลังงานดังนั้นปฏิกิริยาที่เกิดขึ้นจากการรวมตัวกันของไอออนบวกและไอออนลบเกิดเป็นสารประกอบไอออนิกเป็นปฏิกิริยาคายพลังงานเนื่องจากมีการสร้างพันธะไอออนิก
พลังงานที่เกี่ยวข้องกับการรวมตัวกันของไอออนบวกและไอออนลบในสารประกอบไอออนิกเรียกว่าพลังงานโครงผลึกซึ่งในทางปฏิบัติไม่สามารถทำการทดลองได้โดยนำไอออนบวกและไอออนลบที่บริสุทธิ์มาทำปฏิกิริยากันได้ค่าพลังงานดังกล่าวจึงได้จากการคำนวณโดยอาศัยขั้นตอนการเกิดปฏิกิริยาย่อยๆหลายขั้นตอนตามวัฏจักรบอร์น-ฮาเบอร์ โดยมีสมมติฐานว่าพลังงานรวมในแต่ละขั้นตอนจะเท่ากับพลังงานในการเกิดสารประกอบไอออนิกเช่นการเกิดสารประกอบโซเดียมคลอไรด์ 1 โมล ประกอบด้วยขั้นตอนต่างๆดังนี้
1.โลหะโซเดียมสถานะของแข็งระเหิดกลายเป็นแก๊ส ดูดพลังงาน 107 กิโลจูลต่อโมล เรียกพลังงานที่ใช้ในขั้นนี้ว่าพลังงานการระเหิด

Na(s) ---> Na(g) 107kJ/mol

2.อะตอมของโซเดียมในสถานะแก๊สเสียอิเล็กตรอนกลายเป็น Na^+ ดูดพลังงาน 496 กิโลจูลต่อโมล เรียกพลังงานที่ใช้ในขั้นนี้ว่า พลังงานไอออไนเซชัน

Na(g) ---> Na^+(g) + e^- 496kJ/mol

3.โมเลกุลแก๊สคลอรีนสลายพันธะ Cl-Cl ได้อะตอมคลอรีน 2 อะตอมในสถานะแก๊ส ดูดพลังงานเท่ากับ 242 กิโลจูลต่อโมล เรียกพลังงานที่ใช้ในขั้นนี้ว่า พลังงานพันธะ

Cl2(g) ---> 2Cl(g) 242kJ/mol

แต่เนื่องจาก NaCl 1 โมลประกอบด้วย Cl^- 1โมลไอออน ดังนั้นพลังงานที่ใช้ในขั้นนี้จะเป็นครึ่งหนึ่งของพลังงานการสลายพันธะต่อโมลของ Cl2 นั่นคือจะใช้พลังงานเพียง 121 กิลโลจูล

1/2Cl2(g) ---> Cl(g) 121kJ

4.อะตอมคลอรีนในสถานะแก๊สเมื่อรับอิเล็กตรอนที่หลุดออกจากอะตอมโซเดียมแล้วกลายเป็น Cl^- จะคายพลังงาน 349 กิโลจูลต่อโมล พลังงานที่ได้ในขั้นนี้เรียกว่า สัมพรรคภาพอิเล็กตรอน

Cl(g) + e^- ---> Cl^-(g) -349kJ/mol

5.เมื่อโซเดียมไอออนกับคลอไรด์ไอออนในสถานะแก๊สกันเป็นผลึกโซเดียมคลอไรด์จะคายพลังงานออกมาพลังงานที่ได้ในครั้งนี้เรียกว่า พลังงานของผลึก หรือ พลังงานแลตทิซ


Na^+ + Cl^- (g) ---> NaCl(s) พลังงานโครงผลึก

เมื่อรวมสมการของปฏิกิริยาย่อยทั้ง 5 ขั้นจะเหลือ Na และ Cl2 เป็นสารตั้งต้น และเหลือ NaCl เป็นผลิตภัณฑ์โดยสารอื่นๆและอิเล็กตรอนจะหักล้างกันหมดดังนี้


 
ซึ่งปฏิกิริยารวมที่ได้เหมือนกับปฏิกิริยาการเกิดสารประกอบโซเดียมคลอไรด์ดังสมการ

Na(s) +1/2Cl2(g) ---> NaCl(s)

และมีค่าพลังงานรวม = 107 + 496 + 121 + (-349) + พลังงานแลตทิซ

เนื่องจากพลังงานการเกิดสารประกอบโซเดียมคลอไรด์ซึ่งสามารถหาได้จากการทดลองมีค่าเป็น -412 kJ/mol ดังนั้นสามารถคำนวณหาค่าพลังงานแลตทิซดังนี้

-412 = 107 + 496 + 121 + (-349) + พลังงานแลตทิซ

พลังงานแลตทิซ = -787kJ/mol

ค่าพลังงานแลตทิซที่คำนวณได้มีค่าเป็นลบแสดงว่าการรวมตัวกันของโซเดียมไอออนและคลอไรด์ไอออนทำให้เกิดการคายพลังงานในทางตรงกันข้ามการสลายพันธะระหว่างโซเดียมไอออนและคลอไรด์ไอออนในโครงผลึกของโซเดียมคลอไรด์จะเป็นกระบวนการดูดพลังงานซึ่งจะมีเครื่องหมายและค่าพลังงานเป็นบวก

วัฏจักรบอร์นฮาเบอร์ ของการเกิดสารประกอบโซเดียมคลอไรด์แอนด์เขียนเป็นแผนภาพเพื่อแสดงการเปลี่ยนแปลงพลังงานได้ดังรูป


                      จากรูปจะสังเกตเห็นได้ว่าพลังงานที่ได้จากขั้นตอนการพลังงานมีค่ามากกว่าพลังงานที่ได้จากขั้นตอนดูดพลังงานจึงทำให้เกิดสารประกอบโซเดียมคลอไรด์เป็นปฏิกิริยาคายพลังงาน
          3.2.4 สมบัติของสารประกอบไอออนิก
                      สารประกอบไอออนิกส่วนใหญ่เป็นผลึกที่แข็งเนื่องจากการยึดเหนี่ยวที่แข็งแรงระหว่างไอออนบวกและไอออนลบและผลึกของสารประกอบไอออนิกมีความเปราะ แตกหักได้ง่ายเนื่องจากการเลื่อนตำแหน่งเพียงเล็กน้อยของไอออนเมื่อมีแรงกระทำอาจทำให้ไอออนชนิดเดียวกันลื่นไถลไปอยู่ตำแหน่งตรงกลางจึงเกิดแรงผลักระหว่างกันดังรูป


                       จากรูปจะสังเกตเห็นได้ว่าพลังงานที่ได้จากขั้นตอนการพลังงานมีค่ามากกว่าพลังงานที่ได้จากขั้นตอนดูดพลังงานจึงทำให้เกิดสารประกอบโซเดียมคลอไรด์เป็นปฏิกิริยาคายพลังงาน              
สารประกอบไอออนิกสถานะของแข็งไม่นำไฟฟ้าเนื่องจาก ไอออนที่เป็นองค์ประกอบยึดเหนี่ยวกันอย่างแข็งแรงไม่สามารถเคลื่อนที่ได้แต่เมื่อหลอมเหลวหรือละลายน้ำจะนำไฟฟ้าได้ดีเนื่องจากไอออนที่เป็นองค์ประกอบยึดเหนี่ยวกันอย่างแข็งแรงไม่สามารถเคลื่อนที่ได้ แต่เมื่อหลอมเหลวหรือละลายน้ำจะนำไฟฟ้าได้เนื่องจากไอออนสามารถเคลื่อนที่ได้ สารประกอบไอออนิกมีจุดหลอมเหลวและจุดเดือดสูงส่วนใหญ่ละลายน้ำได้และสารละลายของสารประกอบไอออนิกในน้ำส่วนใหญ่มีสมบัติเป็นเบสหรือกลางโดยสารละลายของสารประกอบออกไซด์มีสมบัติเป็นเบสและสารละลายของสารประกอบคลอไรด์มีสมบัติเป็นกลาง ดังตาราง


การละลายน้ำของสารประกอบไอออนิกเกี่ยวข้องกับกระบวนการที่ไอออนบวกและไอออนลบแยกออกจากโครงผลึกและเป็นกระบวนการที่โมเลกุลของน้ำล้อมรอบไอออนแต่ละชนิดโดยสารที่เมื่อละลายน้ำแล้วแตกตัวเป็นไอออนเรียกสามีว่าสารละลายอิเล็กโทรไลต์


กระบวนการที่ไอออนบวกและไอออนลบแยกออกจากโครงผลึกเป็นกระบวนการดูดพลังงานที่มีค่าเท่ากับพลังงานและแลตทิซ ดังที่ได้กล่าวมาแล้ว ส่วนกระบวนการที่โมเลกุลของน้ำล้อมรอบไอออนแต่ละชนิดเป็นกระบวนการคายพลังงานที่เรียกว่า พลังงานไฮเดรชัน
ถ้าค่าพลังงานแลตทิซ น้อยกว่าค่าพลังงานไฮเดรชันการละลายจะเป็นกระบวนการคายพลังงานซึ่งจะทำให้อุณหภูมิของสารละลายสูงขึ้นและสารละลายจะละลายได้ดีที่อุณหภูมิต่ำในทางกลับกันถ้าค่าพลังงานแลตทิซมากกว่าค่าพลังงานไฮเดรชันการละลายจะเป็นกระบวนการดูดพลังงานซึ่งจะทำให้อุณหภูมิของสารละลายลดลงและสารจะละลายได้ดีที่อุณหภูมิสูงในกรณีที่มีค่าพลังงานแลตทิซมากกว่าพลังงานไฮเดรชันมากๆ สารอาจจะละลายได้น้อยมากหรือไม่ละลาย
จากที่ทราบแล้วว่าสารประกอบไอออนิกเมื่อละลายน้ำไอออนบวกและไอออนลบจะแยกออกจากกันถ้าการผสมสารละลายของสารประกอบไอออนิกทำให้เกิดตะกอนแสดงว่าไอออนในสารละลายผสมทำปฏิกิริยากันเกิดเป็นสารใหม่ที่ไม่ละลายน้ำ ดังรูป


ปฏิกิริยาการเกิดตะกอนของสารประกอบไอออนิกในน้ำอาจเขียนแทนด้วยสมการไอออนิก ที่แสดงไอออนในสารละลายครบทุกชนิดเช่นปฏิกิริยาระหว่างสารละลายซิลเวอร์ไนเตรตกับสารละลายโซเดียมคลอไรด์เขียนสมการไอออนิกได้ดังนี้

Ag^+(aq) + NO3^-(aq) + Na^+(aq) + Cl^-(aq) ---> AgCl(s) + NO3^-(aq) + Na^+(aq)

ไอออนในสมการของปฏิกิริยาที่มีน้ำเป็นตัวทำละลายแสดงสถานะไอออนเป็น aq ซึ่งมาจากคำว่า a queous solution เนื่องจากในสมการไอออนิกมีไอออนที่ไม่ทำปฏิกิริยาการปรากฏอยู่ทางด้านซ้ายและด้านขวาของสมการที่สามารถตัดออกจากสมการให้เหลือเฉพาะไอออนที่ทำปฏิกิริยากันได้เป็นผลิตภัณฑ์เรียกว่า สมการไอออนสุทธิ

Ag^+(aq) + Cl^-(aq) ---> AgCl(s)

การอธิบายหรือการทำนายปฏิกิริยาการเกิดตะกอนของสารละลายของสารประกอบไอออนิก สามารถพิจารณาได้จากสมบัติการละลายน้ำตามหลักการเบื้องต้นดังนี้
สารประกอบที่ละลายน้ำ
-สารประกอบของโลหะแอลคาไลและแอมโมเนียทุกชนิด
-สารประกอบไนเทรต คลอเรต เปอร์คลอเรต แอซีเตต
-สารประกอบคลอไรด์ โบรไมด์ ไอโอไดด์
-สารประกอบคอร์บอเนต ฟอสเฟต ซัลไฟด์ และซัลไฟต์
-สารประกอบซัลเฟต
สารประกอบที่ไม่ละลายน้ำ
-สารประกอบออกไซด์ของโลหะ
-สารประกอบไฮดรอกไซด์
3.3 พันธะโคเวเลนต์
สารที่เกิดจากธาตุอโลหะรวมตัวกันเช่นแก๊สออกซิเจนแก๊สไนโตรเจนและแก๊สคาร์บอนไดออกไซด์ การยึดเหนี่ยวระหว่างอะตอมของธาตุในสารเหล่านี้เป็นพันธะไอออนิกหรือไม่เพราะเหตุใด
3.3.1 การเกิดพันธะโคเวเลนต์
ธาตุอโลหะมีค่าอิเล็กโทรเนกาติวิตีสูงดังนั้นเมื่อรวมตัวกันจะไม่มีอะตอมใดยอมเสียอิเล็กตรอน อะตอมจึงยึดเหนี่ยวกันโดยใช้เวเลนซ์เล็กตรอนร่วมกันเรียกการยึดเหนี่ยวในว่าพันธะโคเวเลนต์แล้วนะสารที่อะตอมยึดเหนี่ยวกันด้วยพันธะโคเวเลนต์ว่าสารโคเวเลนต์ซึ่งส่วนใหญ่อยู่ในรูปโมเลกุลโดยการเกิดพันธะในโมเลกุลโคเวเลนต์ส่วนใหญ่เป็นไปตามกฎออกเตตดังตัวอย่าง
คลอรีนมีเวเลนซ์อิเล็กตรอนเท่ากับ 7 ดังนั้นข้อดีทั้ง 2 อะตอมจะใช้เวลาดิจิตอลร่วมกัน 1 คู่เพื่อให้มีเวเลนซ์อิเล็กตรอนครบ 8 ตามกฎออกเตต เขียนแผนภาพและสัญลักษณ์แบบจุดของลิวอิสแสดงการเกิดพันธะได้ดังนี้


พันธะโคเวเลนต์ในโมเลกุลแก๊สคลอรีนเกิดจากการใช้เวเลนซ์อิเล็กตรอนร่วมกัน 1 คู่พันธะนี้เรียกว่าพันธะเดี่ยว ด้วยอิเล็กตรอนคู่ที่ใช้ร่วมกันในการเกิดพันธะเรียกว่าอิเล็กตรอนคู่ร่วมพันธะส่วนอิเล็กตรอนคู่ที่ไม่ได้เกิดพันธะเรียกว่าอิเล็กตรอนคู่โดดเดี่ยวซึ่งในโมเลกุลแก๊สคลอรีนมีอิเล็กตรอนคู่ร่วมพันธะ 1 คู่และมีอิเล็กตรอนคู่โดดเดี่ยว 6 คู่



อีกทั้งยังมีการเกิดพันธะในโมเลกุล ออกซิเจนแต่ละอะตอมมีเวเลนซ์อิเล็กตรอนเท่ากับ 6 ดังนั้นออกซิเจนทั้ง 2 อะตอมจะใช้เวทีเล็กตอนร่วมกัน 2 คู่เพื่อให้เป็นไปตามกฎออกเตต เกิดพันธะโคเวเลนต์แบบพันธะคู่ นอกจากนี้พันธะโคเวเลนต์ยังอาจเป็นพันธะสาม เช่นในโมเลกุลแก๊สไนโตรเจนไนโตรเจนแต่ละอะตอมมีเวเลนซ์อิเล็กตรอนเท่ากับ 5 ดังนั้นไนโตรเจนทั้ง 2 อะตอมจะใช้เวลาที่เล็กตอนร่วมกัน 3 คู่เพื่อให้เป็นไปตามกฎออกเตต
ในโครงสร้างลิวอิส อิเล็กตรอนคู่ร่วมพันธะสามารถแสดงได้ด้วยเส้นพันธะในขณะที่อิเล็กตรอนคู่โดดเดี่ยวแสดงด้วยจุดคู่เสมอเช่นโมเลกุลแอมโมเนียมีเส้นพันธะ N-H 3 พันธะ แทนอิเล็กตรอนคู่ร่วมพันธะ 3 คู่ ในขณะที่อีเล็คตรอนคู่โดดเดี่ยว 1 คู่แสดงด้วยจุดคู่บนอะตอมไนโตรเจนอิเล็กตรอนคู่โดดเดี่ยวนี้สามารถสร้างพันธะกับ H^+ เกิดเป็นแอมโมเนียมไอออน จำนวนอิเล็กตรอนรอบอะตอมกลางยังคงเป็นไปตามกฎออกเตต ในกรณีที่พันธะโคเวเลนต์ที่เกิดขึ้นมาจากอะตอมไนโตรเจนเท่ากัน แสดงดังนี้


สารโคเวเลนต์บางชนิดอาจมีอะตอมกลางที่มีจำนวนอิเล็กตรอนล้อมรอบไม่เป็นไปตามกฎออกเตต
3.3.2 สูตรโมเลกุลและชื่อของสารโคเวเลนต์
สูตรโมเลกุลของสารโคเวเลนต์โดยทั่วไปเขียนสัญลักษณ์ของธาตุองค์ประกอบโดยเรียงลำดับจากค่าอิเล็กโทรเนกาติวิตีน้อยไปมากพร้อมทั้งระบุจำนวนอะตอมของธาตุที่มีจำนวนอะตอมมากกว่า 1 อะตอมยกเว้นสามารถชนิดเช่น NH3 และ CH4 ทั้งที่ถ้าไนโตรเจนและธาตุคาร์บอนมีอิเล็กโทรเนกาติวิตีสูงกว่าธาตุไฮโดรเจน
การเรียกชื่อสารโคเวเลนต์มีหลักการดังนี้
1.สารโคเวเลนต์ที่ประกอบด้วยธาตุชนิดเดียวกันเรียกตามชื่อท่านนั้นซึ่งท่านเหล่านี้ส่วนใหญ่มีสถานะเป็นแก๊สที่อุณหภูมิห้องจึงนิยมเรียกชื่อโดยระบุสถานะด้วยเพื่อให้ทราบว่าเป็นการกล่าวถึงโมเลกุลที่ไม่ใช่อะตอมของธาตุเช่นแก๊สออกซิเจน
2.สารโคเวเลนต์ที่ประกอบด้วยธาตุ 2 ชนิดให้เรียกชื่อธาตุตามลำดับที่ปรากฏในสูตรโมเลกุลโดยเปลี่ยนพยางค์ท้ายเป็น -ide และระบุจำนวนอะตอมองค์ประกอบ ในโมเลกุลด้วยคำภาษากรีก ดังตาราง

ยกเว้นกรณีที่ธาตุและมีเพียงอะตอมเดียวไม่ต้องระบุจำนวนอะตอมของธาตุนั้น
การเรียกชื่อสารโคเวเลนต์ที่เป็นสารประกอบออกไซด์นอกจากเรียกชื่อสารตามหลักการข้างต้นแล้วยังนิยมเรียกชื่อสารโดยแต่ละตัวสุดท้ายของคำที่ระบุจำนวนอะตอมออก เช่น CO นิยมเรียกว่าคาร์บอนมอนอกไซด์ นอกจากนี้สารบางชนิดยังมีเพียงชื่อเล่นโดยไม่เป็นไปตามหลักการข้างต้นครบทุกประการเช่น HCl นิยมเรียกว่าไฮโดรเจนคลอไรด์ แทนที่จะเรียกว่าไฮโดรเจนมอนอคลอไรด์
3.3.3 ความยาวพันธะและพลังงานพันธะของสารโคเวเลนต์
อะตอมไฮโดรเจน 2 อะตอมเคลื่อนที่เข้ากันจะเกิดแรงดึงดูดระหว่างอิเล็กตรอนของอะตอมหนึ่งกับโปรตอนในนิวเคลียสของอะตอมหนึ่งขณะเดียวกันก็มีแรงผลักระหว่างโปรตอนกับโปรตอนและอิเล็กตรอนกับอิเล็กตรอนของอะตอมทั้งสองด้วย แรงดึงดูดทำให้พลังงานศักย์ลดลงแต่แรงผลักทำให้พลังงานศักย์เพิ่มขึ้น ทำให้พลังงานศักย์รวมลดลงแล้วเพิ่มขึ้นตามระยะห่างระหว่างนิวเคลียสโดยมีผลรวมพลังงานศักย์ต่ำที่สุดเมื่อระยะทางระหว่างนิวเคลียสทั้งสองเท่ากับ 74 พิโกเมตร ถ้าอะตอมเคลื่อนที่เข้าใกล้กันมากกว่านี้และหากจะมีมากกว่าแรงดึงดูดซึ่งทำให้พลังงานศักย์รวมเพิ่มขึ้น


                         จากรูประยะห่างระหว่างนิวเคลียสที่ทำให้พลังงานศักย์รวมต่ำที่สุดเรียกว่าความยาวพันธะ ในทางปฏิบัติความยาวพันธะได้จากการศึกษาการเลี้ยวเบนของรังสีเอกซ์ เมื่อผ่านโครงผลึกของสารหรือจากการวิเคราะห์สเปกตรัมของโมเลกุลสาร ซึ่งพบว่าความยาวพันธะมีแนวโน้มเพิ่มขึ้นตามขนาดอะตอมคู่ร่วมพันธะและการใช้อิเล็กตรอนร่วมกันทำให้ความยาวพันธะโคเวเลนต์สั้นกว่าผลรวมของรัศมีอะตอมอิสระที่มาสร้างพันธะกันสำหรับอะตอมคู่ร่วมพันธะเดียวกันความยาวพันธะจะลดลงจากพันธะเดี่ยวพันธะคู่และพันธะสามตามลำดับอย่างไรก็ตามความยาวพันธะชนิดเดียวกันระหว่างอะตอมคู่เดียวกันอาจจะไม่เท่ากันในสารต่างชนิดกัน
                         ในการประมาณความยาวพันธะระหว่างอะตอมคู่หนึ่ง โดยทั่วไปนิยมใช้ความยาวพันธะเฉลี่ย การศึกษาความยาวพันธะของโมเลกุลโคเวเลนต์นำไปสู่การอธิบายการเกิดพันธะในโมเลกุลของสารโคเวเลนต์บางชนิดที่สามารถเขียนโครงสร้างลิวอิสตามกฎออกเตตได้มากกว่า 1 โครงสร้างเช่นโมเลกุลโอโซนมีโครงสร้างลิวอิส 2 โครงสร้างซึ่งประกอบด้วยพันธะเดี่ยวและพันธะคู่ระหว่างออกซิเจนที่ควรมีค่าความยาวพันธะไม่เท่ากัน แต่จากการศึกษาพบว่าความยาวพันธะระหว่างออกซิเจนมีค่าเท่ากับ 128 พิโกเมตรเพียงค่าเดียว ซึ่งเป็นค่าที่อยู่ระหว่างความยาวพันธะ O-O (148 พิโกเมตร) และพันธะ O=O (121 พิโกเมตร) แสดงว่าพันธะทั้งสองในโมเลกุลโอโซนเป็นพันธะชนิดเดียวกันที่อาจอธิบายได้โดยทฤษฎี เรโซแนนซ์ ว่าอิเล็กตรอนคู่ร่วมพันธะ 1 คู่เคลื่อนย้ายไปมาระหว่างอะตอมทั้ง 3 ทำให้เกิดโครงสร้างผสมระหว่าง 2 โครงสร้างการเคลื่อนย้ายตำแหน่งของอิเล็กตรอนคู่ร่วมพันธะในโมเลกุลที่เขียนโครงสร้างลิวอิสได้มากกว่าหนึ่งแบบเรียกว่า เรโซแนนซ์ และเรียกโครงสร้างลิวอิสแต่ละแบบว่า โครงสร้างเรโซแนนซ์ โดยแสดงการเกิดเรโซแนนซ์ระหว่างโครงสร้างด้วยลูกศร 2 หัวและเรียกโครงสร้างผสมของโครงสร้างเรโซแนนซ์ทุกโครงสร้างว่าโครงสร้างเรโซแนนซ์ผสม ดังรูป


นอกจากความยาวพันธะแล้ว กราฟที่แสดงการเปลี่ยนแปลงพลังงานในการเกิดโมเลกุลแก๊สไฮโดรเจนและแสดงให้เห็นว่าโมเลกุลแก๊สไฮโดรเจนมีพลังงานต่ำกว่าอะตอมไฮโดรเจน 436 กิโลจูลต่อโมล หมายความว่าการทำให้โมเลกุลแก๊สไฮโดรเจน 1 โมเลกุลแยกออกเป็นอะตอมไฮโดรเจน 2 อะตอมต้องใช้พลังงานอย่างน้อย 436 กิโลจูลต่อโมลในการสลายพันธะ ระหว่างอะตอมไฮโดรเจนดังสมการ

H2(g) + 436 kJ/mol ---> 2H(g)

ในทางกลับกัน อะตอมไฮโดรเจน 2 อะตอมสร้างพันธะระหว่างกันเกิดเป็นโมเลกุลแก๊สไฮโดรเจน 1 โมเลกุลจะคายพลังงาน 436 กิโลจูลต่อโมล ดังนี้



2H(g) ---> H2(g) + 436 kJ/mol

พลังงานปริมาณน้อยที่สุดที่ใช้ในการสลายพันธะระหว่างอะตอมคู่ร่วมพันธะในโมเลกุลในสถานะแก๊สให้เป็นอะตอมเดี่ยวในสถานะแก๊สเรียกว่าพลังงานพันธะซึ่งส่วนใหญ่ใช้หน่วยเป็นกิโลจูลต่อโมล

การประมาณพลังงานพันธะระหว่างอะตอมคู่หนึ่งโดยทั่วไปนิยมใช้พลังงานพันธะเฉลี่ยดังตาราง

                          จากตาราง จะเห็นว่าพันธะระหว่างคาร์บอนมีทั้งพันธะเดี่ยวพันธะคู่และพันธะสามซึ่งมีค่าพลังงานพันธะเป็น 346 614 และ 839 กิโลจูลต่อโมลตามลำดับ แสดงว่าพันธะสามแข็งแรงกว่าพันธะคู่และพันธะคู่แข็งแรงกว่าพันๆเดี่ยวและถ้าพิจารณาอะตอมคู่ร่วมพันธะๆเดียวกันของแท้ที่มีค่าพลังงานน้อยจะมีความยาวพันธะมาก นอกจากอะตอมคู่ร่วมพันธะเดียวกันแล้วความสัมพันธ์นี้ยังสามารถใช้เปรียบเทียบพันธะของธาตุในหมู่เดียวกันได้อีกด้วย
                         ปฏิกิริยาเคมีที่เกี่ยวข้องกับกระบวนการสลายพันธะในสารตั้งต้นและการสร้างพันธะเกิดเป็นผลิตภัณฑ์โดยการสลายพันธะเป็นกระบวนการดูด (E1) พลังงานซึ่งมีค่าเป็นบวกและการสร้างพันธะจะมีค่าเป็นลบเป็นกระบวนการคายพลังงาน (E2) และพลังงานของปฏิกิริยา (เดลต้า H) คำนวณได้จากผลรวมของ

 E1 และ E2 เดลต้า H = E1 + E2 

                         ถ้าพลังงานที่ใช้สลายพันธะมีค่ามากกว่าพลังงานที่ใช้สร้างพันธะจะได้ เดลต้า H มีเครื่องหมายเป็นบวก แสดงว่าปฏิกิริยานั้นเป็นปฏิกิริยาดูดพลังงานในทางกลับกันถ้าพลังงานที่คายออกมาจากการสร้างสรรค์ๆมีค่ามากกว่าพลังงานที่ต้องใช้สลายพันธะ จะได้เดลต้า H มีเครื่องหมายเป็นลบ แสดงว่าปฏิกิริยานั้นเป็นปฏิกิริยาคายพลังงาน
               3.3.4 รูปร่างโมเลกุลโคเวเลนต์ 
                       โมเลกุลโคเวเลนต์ที่ประกอบด้วยอะตอมมากกว่า 2 อะตอมนอกจากความยาวพันธะและพลังงานพันธะแล้วข้อมูลที่ใช้ในการอธิบายสมบัติของสารคือ รูปร่างโมเลกุล ในโมเลกุลของน้ำคาร์บอนไดออกไซด์แอมโมเนียและโบรอนไตรฟลูออไรด์มีรูปร่างเป็นโมเลกุลที่ต่างกันหรือไม่อย่างไรเนื่องจากโมเลกุลมีขนาดเล็กมากจึงไม่สามารถพิจารณารูปร่างโมเลกุลได้โดยตรงและสามารถศึกษาเกี่ยวกับรูปร่างโมเลกุลโดยการจำลองตำแหน่งของคู่อิเล็กตรอน ในการทดลอง ดังนี้


คลิกเพื่อเข้าดูการทดลองได้เลย : การจัดตัวของลูกโป่งกับรูปร่างโมเลกุลโคเวเลนต์

จากกิจกรรม ในตอนที่ 1 ลูกโป่งแต่ละลูกซึ่งมีปริมาตรเท่ากันเมื่อนำมาผูกข้อติดกันพบว่าลูกโป่งแต่ละรูปผัดกันเกิดการจับตัวเป็นรูปร่างต่างๆที่สมมาตรในที่มีลูกโป่งเป็นตัวแทนของกลุ่มหมอกอิเล็กตรอนคู่ร่วมพันธะระหว่างอะตอมกลางและอะตอมล้อมรอบซึ่งอิเล็กตรอนเหล่านี้จะผลักกันด้วยแรงกระทำระหว่างประจุชนิดเดียวกันทำให้ได้คิดค่าของพันธะอยู่ห่างกันมากที่สุดเกิดเป็นรูปร่างโมเลกุลในลักษณะเดียวกันกับการจัดตัวของลูกโป่ง และในกิจกรรมตอนที่ 2 ลูกโป่งต่างสีใช้แทนอิเล็กตรอนคู่ร่วมพันธะและอิเล็กตรอนคู่โดดเดี่ยวซึ่งรูปร่างโมเลกุลพิจารณาจากตำแหน่งของอะตอมทั้งหมดโดยไม่นำตำแหน่งของอิเล็กตรอนคู่โดดเดี่ยวมาพิจารณา การคาดคะเนรูปร่างโมเลกุลจากโครงสร้างลิวอิสโดยอาศัยการผลักกันของอิเล็กตรอนคู่ร่วมพันธะและอิเล็กตรอนคู่โดดเดี่ยวอาจใช้ทฤษฎีการผลักระหว่างคู่อิเล็กตรอนในวงเวเลนซ์ (VSEPR) โดยทฤษฎีนี้มีหลักการว่าอิเล็กตรอนคู่โดดเดี่ยวอยู่ใกล้นิวเคลียสมากกว่าอิเล็กตรอนคู่ร่วมพันธะดังนั้นรหัสระหว่างอิเล็กตรอนคู่โดดเดี่ยวด้วยกันจึงมีค่ามากกว่าแรงผลักระหว่างอิเล็กตรอนคู่ร่วมพันธะกับอิเล็กตรอนคู่โดดเดี่ยว และมากกว่าแรงผลักระหว่างอิเล็กตรอนคู่ร่วมพันธะด้วยกัน
จากผลการทดลองกิจกรรมการจับตัวของลูกโป่งกับรูปร่างโมเลกุลโคเวเลนต์สรุปรูปร่างโมเลกุลโคเวเลนต์ดังตาราง





3.3.5 สภาพขั้วของโมเลกุลโคเวเลนต์
สารโคเวเลนต์ที่เกิดจากอะตอมชนิดเดียวกันเช่นแก๊สไฮโดรเจนมีการกระจายของกลุ่มหมอกอิเล็กตรอนคู่ร่วมพันธะระหว่างอะตอมทั้งสองเท่ากันทั้งๆที่เกิดขึ้นในลักษณะเช่นนี้จะเรียกว่าพันธะโคเวเลนต์ไม่มีขั้วและสารโคเวเลนต์ที่เกิดจากอะตอมต่างชนิดกันและมีค่าอิเล็กโทรเนกาติวิตีแตกต่างกันจะมีการกระจายของกลุ่มหมอกอิเล็กตรอนคู่ร่วมพันธะระหว่างอะตอมไม่เท่ากันเช่นไฮโดรเจนคลอไรด์มีอิเล็กตรอนคู่ร่วมพันธะอยู่บริเวณอะตอมคลอรีนมากกว่าอะตอมไฮโดรเจนเพราะอะตอมคลอรีนมีค่าอิเล็กโทรเนกาติวิตีมากกว่าอะตอมไฮโดรเจนทำให้อะตอมของดีแสดงประจุไฟฟ้าค่อนข้างรถยนต์อะตอมไฮโดรเจนมีค่าอิเล็กโทรเนกาติวิตีน้อยกว่าแสดงประจุไฟฟ้าค่อนข้างบวก ที่เกิดขึ้นลักษณะนี้เรียกว่าพันธะโคเวเลนต์มีขั้ว การแสดงขั้วของพันธะอาจใช้สัญลักษณ์ เดลต้าบวก สำหรับอะตอมที่แสดงประจุไฟฟ้าค่อนข้างบวก และเดลต้าลบ สำหรับอะตอมที่แสดงประจุไฟฟ้าค่อนข้างลบหรืออาจใช้เครื่องหมายโดยให้หัวลูกศรหันชี้ไปในทิศของอะตอมที่แสดงประจุไฟฟ้าค่อนข้างลบส่วนท้ายลูกศร ที่มีลักษณะคล้ายเครื่องหมายบวกให้อยู่บริเวณอะตอมที่แสดงประจุไฟฟ้าค่อนข้างบวก


                      ของพันธะทำให้โมเลกุลอะตอมคู่ที่ประกอบด้วยธาตุชนิดเดียวกันเป็นโมเลกุลไม่มีขั้วโมเลกุลอะตอมคู่ที่ประกอบด้วยธาตุต่างชนิดกันเป็นโมเลกุลมีขั้วและโมเลกุลโคเวเลนต์ที่ประกอบด้วยอะตอมมากกว่า 2 อะตอม และพันธะระหว่างครูอะตอมเป็นพันธะมีขั้วจะเป็นโมเลกุลมีขั้วหรือไม่อย่างไร สภาพขั้วของโมเลกุลที่ประกอบด้วยอะตอมมากกว่า 2 อะตอมพิจารณาจากการรวมสภาพขั้วของพันธะแบบเวกเตอร์ ซึ่งถ้าเวกเตอร์ หักหลังกันหมดจะทำให้โมเลกุลไม่มีขั้วแต่ถ้าเวกเตอร์แทนละกันไม่หมดโมเลกุลจะเป็นโมเลกุลที่มีขั้ว


                      โมเลกุลที่อะตอมกลางไม่มีอิเล็กตรอนคู่โดดเดี่ยว และอะตอมล้อมรอบเหมือนกันทุกอะตอมเป็นโมเลกุลไม่มีขั้วถึงแม้ว่าพันธะภายในโมเลกุลจะเป็นพันธะที่มีขั้วแต่เนื่องจากรูปร่างโมเลกุล


                      สำหรับโมเลกุลที่อะตอมกลางมีอิเล็กตรอนคู่โดดเดี่ยวหรือมีอะตอมล้อมรอบเป็นธาตุต่างชนิดกันส่วนใหญ่เป็นโมเลกุลมีขั้วเนื่องจากเวกเตอร์สภาพขั้วของพันธะหักล้างกันไม่หมด
                      โมเลกุลอะตอมกลางมีอิเล็กตรอนคู่โดดเดี่ยวส่วนใหญ่เป็นโมเลกุลแบบมีขั้วและมีบางชนิดอาจเป็นโมเลกุลไม่มีขั้วเนื่องจากมีรูปร่างโมเลกุลแบบสี่เหลี่ยมแบนราบทำให้เวกเตอร์สภาพขั้วหักล้างกันหมดโมเลกุลอะตอมกลางมีอิเล็กตรอนคู่โดดเดี่ยวส่วนใหญ่เป็นโมเลกุลแบบมีขั้วและมีบางชนิดอาจเป็นโมเลกุลไม่มีขั้วเนื่องจากมีรูปร่างโมเลกุลแบบสี่เหลี่ยมแบนราบทำให้เวกเตอร์สภาพขั้วหักล้างกันหมด
           3.3.6 แรงยึดเหนี่ยวระหว่างโมเลกุลและสมบัติของสารโคเวเลนต์
                      ที่อุณหภูมิห้องสารโคเวเลนต์แต่ละชนิดอันอยู่ในสถานะที่แตกต่างกันทั้งนี้ขึ้นอยู่กับแรงยึดเหนี่ยวระหว่างโมเลกุลหรือแรงแวนเดอร์วาลส์ โดยในสถานะของแข็งโมเลกุลอยู่ชิดกันจนไม่สามารถเคลื่อนที่ได้และมีแรงยึดเหนี่ยวระหว่างโมเลกุลมากในสถานะของเหลวโมเลกุลสามารถเคลื่อนที่ได้แต่ยังคงอยู่ชิดติดกันและมีแรงยึดเหนี่ยวระหว่างโมเลกุลน้อยกว่าในของแข็งส่วนในสถานะแก๊สโมเลกุลอยู่ห่างกันสามารถเคลื่อนที่ได้อย่างอิสระและมีแรงยึดเหนี่ยวระหว่างโมเลกุลน้อยมากจนถือว่าไม่มีแรงยึดเหนี่ยวระหว่างโมเลกุลดังนั้นการเปลี่ยนแปลงสถานะของสารจากของแข็งไปเป็นของเหลว หรือของเหลวไปเป็นแก๊สซึ่งเกี่ยวข้องกับการทำลายงานยึดเหนี่ยวระหว่างโมเลกุลโดยไม่มีการทำลายพันธะโคเวเลนต์ ซึ่งแรงยึดเหนี่ยวระหว่างโมเลกุลมีค่าพลังงานน้อยกว่าพันธะโคเวเลนต์มากสามารถทำลายได้ด้วยการให้พลังงานความร้อนแก้สารจนกระทั่งโมเลกุลของสารมีพลังงานจลน์สูงพอที่จะเกิดการเปลี่ยนแปลงสถานะได้ดังนั้นสารแต่ละชนิดซึ่งมีแรงยึดเหนี่ยวระหว่างโมเลกุลที่แตกต่างกันจะมีจุดหลอมเหลวและจุดเดือดที่ต่างกันด้วย
                      นอกจากจุดหลอมเหลวของสารที่จะเกี่ยวข้องกับแรงยึดเหนี่ยวระหว่างโมเลกุลแล้วยังขึ้นอยู่กับการจัดเรียงโมเลกุลในของแข็งทำให้แนวโน้มของจุดหลอมเหลวอาจไม่สอดคล้องกับแรงยึดเหนี่ยวระหว่างโมเลกุลโดยตรง
                      แรงยึดเหนี่ยวระหว่างโมเลกุลเกี่ยวข้องกับขนาดของโมเลกุลและสภาพขั้วของโมเลกุลซึ่งแรงยึดเหนี่ยวระหว่างโมเลกุลมีหลายชนิดและมีชื่อเรียกที่ต่างกันซึ่งในที่นี้จะกล่าวถึง 3 ชนิดที่สำคัญดังนี้ 
                      1.และแพร่กระจายลอนดอน แรงแพร่กระจายลอนดอน เป็นแรงยึดเหนี่ยวระหว่างโมเลกุลไม่มีขั้วหรืออะตอมแก๊สมีสกุลซึ่งเป็นแรงอย่างอ่อนๆที่เกิดขึ้นจากการกระจายของอิเล็กตรอนในอะตอมขณะใดขณะหนึ่งซึ่งอาจไม่เท่ากันจึงทำให้สภาพขั้วชั่วขณะ แล้วเหนี่ยวนำให้โมเลกุลที่อยู่ติดกันเกิดขั้วตรงข้ามและมีแรงดึงดูดชั่วขณะ โดยแรงแผ่กระจายนี้เพิ่มขึ้นตามขนาดของโมเลกุลเนื่องจากโมเลกุลขนาดใหญ่สามารถเกิดสภาพขั้วชั่วขณะได้มากกว่า 
                      2.แรงระหว่างขั้วสำหรับโมเลกุลมีขั้วนอกจากจะมีแรงแผ่กระจายลอนดอนแล้ว ยังมีแรงดึงดูดที่เกิดจากสภาพของขั้วโมเลกุลด้วยโมเลกุลที่อยู่ใกล้กันจะหันส่วนของโมเลกุลที่มีขั้วตรงข้ามกันเข้าหากันเกิดเป็นแรงดึงดูดทางไฟฟ้าจากสภาพขั้วนี้โดยทั่วไปในระหว่างขั้วเพิ่มขึ้นตามสภาพขั้วของโมเลกุลที่มีขนาดใกล้เคียงกัน
                      3.พันธะไฮโดรเจนเมื่อพิจารณาจุดเดือดของสารประกอบไฮโดรเจนกับธาตุหมู่ VIIA จะเห็นว่า HF มีจุดเดือดสูงกว่าสารประกอบอื่นทั้งที่มีขนาดโมเลกุลเล็กที่สุดซึ่งไม่เป็นไปตามแนวโน้มของขนาดโมเลกุลดังที่ได้กล่าวมาแล้วข้างต้นแสดงว่า HF มีแรงดึงดูดระหว่างโมเลกุลมากกว่าสารประกอบของไฮโดรเจนกับธาตุหมู่ VIIA อื่นๆ ทั้งนี้เพราะผลต่างของค่าอิเล็กโทรเนกาติวิตีระหว่างไฮโดรเจนกับฟลูออรีนมีค่ามากทำให้กลุ่มหมอกอิเล็กตรอนอยู่ทางด้านอะตอมฟลูออรีนที่มีขนาดเล็กอย่างหนาแน่นอะตอมฟลูออรีนและไฮโดรเจนมีสภาพขั้วสูงกว่าในกรณีที่ HCl HBr และ HI มาก ทำให้มีแรงดึงดูดระหว่างโมเลกุลมากด้วยแรงดึงดูดระหว่างโมเลกุลที่เกิดขึ้นจากอะตอมไฮโดรเจนของโมเลกุลหนึ่งกับอิเล็กตรอนคู่โดดเดี่ยวบนอะตอมของธาตุที่มีขนาดเล็กและมีอิเล็กโทรเนกาติวิตีสูงของอีโมเลกุลหนึ่งเรียกแรงดึงดูดนี้ว่า พันธะไฮโดรเจน


3.4 พันธะโลหะ
โลหะบางชนิดเส้นทองแดง เหล็กอะลูมิเนียมมีสมบัติบางประการคล้ายกับแสดงว่าสารเหล่านี้มีการยึดเหนี่ยวกันระหว่างอนุภาคที่เหมือนกันและอะตอมธาตุโลหะสร้างพันธะเคมีระหว่างกันอย่างไรเหมือนหรือต่างกัน จากพันธะไอออนิกและโคเวเลนต์หรือไม่
3.4.1 การเกิดพันธะโลหะ
จากที่ทราบแล้วว่าโลหะส่วนใหญ่มีสถานะเป็นของแข็งมีจุดหลอมเหลวและจุดเดือดสูงผิวมันวาวสามารถนำไฟฟ้าและความร้อนได้ดีจะสมบัติดังกล่าวจะเห็นว่าโลหะมีสมบัติบางประการของสารประกอบไอออนิกและมีสมบัติบางประการที่แตกต่างจากสารประกอบไอออนิกเช่นการนำไฟฟ้าและการนำความร้อนได้ดีในสถานะของแข็งผิวมันวาวและสมบัติส่วนใหญ่ต่างจากพันธะโคเวเลนต์ซึ่งแสดงว่าโลหะน่าจะยึดเหนี่ยวกันด้วยพันธะที่แตกต่างจากพันธะไอออนิกและพันธะโคเวเลนต์การที่อะตอมของโลหะมีค่าพลังงานไอออไนเซชันต่างการยึดเหนี่ยวระหว่างวาเลนอิเล็กตรอนกับโปรตอนในนิวเคลียสจึงน้อยให้เวเลนซ์อิเล็กตรอนของแต่ละอะตอมสามารถเคลื่อนที่ได้อย่างอิสระไปทั่วทั้งชิ้นโลหะและเกิดการยึดเหนี่ยวกับโปรตอนในนิวเคลียสทุกทิศทุกทางการยึดเหนี่ยวนี้เรียกว่าพันธะโลหะการเกิดพันธะโลหะแสดงได้ด้วยแบบจำลองทะเลอิเล็กตรอน
3.4.2 สมบัติของโลหะ
1.โลหะมีจุดหลอมเหลวและจุดเดือดสูง
2.โลหะมีผิวมันวาวและสามารถสะท้อนแสงได้
3.โลหะนำไฟฟ้าและความร้อนได้ดี นอกจากนี้โลหะยังสามารถตีให้ออกเป็นแผ่นและดึงให้เป็นเส้นด้าย 
3.5 การใช้ประโยชน์ของสารประกอบไอออนิก สารโคเวเลนต์ และโลหะ
จากการที่สารประกอบไอออนิกสารโคเวเลนต์และโลหะมีสมบัติเฉพาะตัวมาว่าการที่ต่างกันจึงสามารถนำมาใช้ประโยชน์ในด้านต่างๆได้ตามความเหมาะสม เช่น
- แอมโมเนียมคลอไรด์และซิงค์คลอไรด์ เป็นสารประกอบไอออนิกที่สามารถนำไฟฟ้าได้จากการแตกตัวเป็นไอออนเมื่อละลายน้ำจึงนำไปใช้เป็นสารอิเล็กโทรไลต์ในถ่านไฟฉาย
- พอลิไวนิลคลอไรด์หรือ PVC เป็นสารโคเวเลนต์ที่ไม่สามารถนำไฟฟ้าได้จึงเป็นฉนวนไฟฟ้าที่หุ้มสายไฟฟ้า
- ซิลิกอนคาร์ไบด์ เป็นสารโคเวเลนต์โครงร่างตาข่ายที่มีจุดหลอมเหลวสูงและมีความแข็งแรงมากจึงนำไปใช้ทำเครื่องบด
- ทองแดงและอะลูมิเนียม เป็นโลหะที่นําไฟฟ้าได้ดีจึงนำไปใช้เป็นตัวนำไฟฟ้าอลูมิเนียมและเหล็กเป็นโลหะที่นําความร้อนได้ดีจึงนำไปทำภาชนะสำหรับประกอบอาหาร เช่น หม้อ กะทะ
ที่มา : หนังสือเรียนรายวิชาเพิ่มเติมวิทยาศาสตร์ เคมี เล่ม 1